Studies on the changes of uPA system in a co-culture model of bone marrow stromal cells-leukemia cells

The core of the tumor microenvironment in the hematological system is formed by bone marrow stromal cells (BMSCs). In the present study, we explored the interaction between the urokinase plasminogen activator (uPA) system and the leukemia bone marrow microenvironment (BMM). We established BMSCs-HL60...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience reports 2020-11, Vol.40 (11), Article 20194044
Hauptverfasser: Zhou, Lanxia, Guo, Hong, Jia, Fang, Chen, Xuan, Zhang, Xiaowei, Dong, Shouliang, Zhao, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The core of the tumor microenvironment in the hematological system is formed by bone marrow stromal cells (BMSCs). In the present study, we explored the interaction between the urokinase plasminogen activator (uPA) system and the leukemia bone marrow microenvironment (BMM). We established BMSCs-HL60 and HS-5-K562 co-culture mod els in direct contact mode to simulate the BMM in leukemia. In BMSCs-HL60 co-culture model, the expression levels of uPA, uPA receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1) and vascular endothelial growth factor (VEGF) in BMSCs were higher than those in mono-cultured BMSCs. Matrix metalloproteinase (MMP)-9 (MMP-9) was up-regulated in co-cultured HL60 cells. In HS-5-K562 co-culture model, only uPA, PAI-1, and VEGF-A were up-regulated in HS-5 cells. The levels of the uPA protein in the co-culture supernatant were significantly higher than that of mono-cultured BMSCs or HS-5 cells. Our findings demonstrate that the co-culture stimulates the production of uPA, uPAR, PAI-1, MMP-9, and VEGF-A by BMSCs. It could further explain how the uPA system in leukemia cells is involved in the growth, development, and prognosis of leukemia.
ISSN:0144-8463
1573-4935
DOI:10.1042/BSR20194044