Adaptive architecture and mechanoresponse of epithelial cells on a torus

Curvature is a geometric feature widely observed in the epithelia and critical to the performance of fundamental biological functions. Understanding curvature-related biophysical phenomena remains challenging partly owing to the difficulty of quantitatively tuning and measuring curvatures of interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2021-01, Vol.265, p.120420-120420, Article 120420
Hauptverfasser: Yu, S-M., Li, B., Amblard, F., Granick, S., Cho, Y-K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Curvature is a geometric feature widely observed in the epithelia and critical to the performance of fundamental biological functions. Understanding curvature-related biophysical phenomena remains challenging partly owing to the difficulty of quantitatively tuning and measuring curvatures of interfacing individual cells. In this study, we prepared confluent wild-type Madin–Darby canine kidney cells on a torus structure presenting positive, zero, and negative Gaussian curvatures with a tubule diameter of 2–7 cells and quantified the mechanobiological characteristics of individual cells. Cells on the torus surface exhibited topological sensing ability both as an individual cell and collective cell organization. Both cell bodies and nuclei, adapted on the torus, exhibited local Gaussian curvature-dependent preferential orientation. The cells on the torus demonstrated significant adjustment in the nuclear area and exhibited asymmetric nuclear position depending on the local Gaussian curvature. Moreover, cells on top of the torus, where local Gaussian curvature is near zero, exhibited more sensitive morphological adaptations than the nuclei depending on the Gaussian curvature gradient. Furthermore, the spatial heterogeneity of intermediate filament proteins related to mechanoresponsive expression of the cell body and nucleus, vimentin, keratin and lamin A, revealed local Gaussian curvature as a key factor of cellular adaptation on curved surfaces. [Display omitted]
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2020.120420