An analogue of Edmonds’ Branching Theorem for infinite digraphs

We extend Edmonds’ Branching Theorem to locally finite infinite digraphs. As examples of Oxley or Aharoni and Thomassen show, this cannot be done using ordinary arborescences, whose underlying graphs are trees. Instead we introduce the notion of pseudo-arborescences and prove a corresponding packing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2021-02, Vol.92, p.103182, Article 103182
Hauptverfasser: Pascal Gollin, J., Heuer, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend Edmonds’ Branching Theorem to locally finite infinite digraphs. As examples of Oxley or Aharoni and Thomassen show, this cannot be done using ordinary arborescences, whose underlying graphs are trees. Instead we introduce the notion of pseudo-arborescences and prove a corresponding packing result. Finally, we verify some tree-like properties for these objects, but give also an example that their underlying graphs do in general not correspond to topological trees in the Freudenthal compactification of the underlying multigraph of the digraph.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2020.103182