Investigation of Core Compositions for Efficient 976 nm Lasing From Step Index Large-Mode-Area Fiber
We present an efficient 976 nm fiber laser achieved in a step index large-mode-area (LMA) fiber by 915 nm diode pumping. The 976 nm lasing was enabled using spectroscopic engineering in a fiber design that helps suppress the competing 1030 nm gain. Our study shows, alumino-phospho-silicate (Al:P) is...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2020-12, Vol.32 (23), p.1457-1460 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an efficient 976 nm fiber laser achieved in a step index large-mode-area (LMA) fiber by 915 nm diode pumping. The 976 nm lasing was enabled using spectroscopic engineering in a fiber design that helps suppress the competing 1030 nm gain. Our study shows, alumino-phospho-silicate (Al:P) is advantageous for shaping a gain spectrum in favor of 976 nm compared to other widely used compositions, hence facilitating otherwise the challenging 976 nm lasing. In addition, a germanium (Ge)-cladding was introduced to achieve LMA and low numerical aperture step-index fiber, permitting a wavelength selective bending technique. By applying the bending technique, an efficient 976 nm lasing was achieved with up to 15 W output power (pump power limited) with 28% slope efficiency in the step-index LMA fiber. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2020.3033993 |