Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy

Hypoxia, as a typical factor in a tumor microenvironment, plays a vital role in tumor treatment resistance, tumor invasion and migration. Hypoxia inducible factor (HIF), as the vital response element of hypoxia, mediates these untoward effects through a series of downstream reactions. Cancer treatme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-11, Vol.12 (42), p.21519-21533
Hauptverfasser: Xu, Menghong, Wang, Ping, Sun, Suhui, Gao, Liquan, Sun, Lihong, Zhang, Lulu, Zhang, Jinxia, Wang, Shumin, Liang, Xiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxia, as a typical factor in a tumor microenvironment, plays a vital role in tumor treatment resistance, tumor invasion and migration. Hypoxia inducible factor (HIF), as the vital response element of hypoxia, mediates these untoward effects through a series of downstream reactions. Cancer treatments such as photodynamic therapy (PDT), radiotherapy (RT) and chemotherapy are severely hindered by hypoxia and HIF, back, however, could be intelligently manipulated through nanocomposite materials for their great potentiality to combine different functions. Herein, we reviewed the smart strategies in emerging research studies to overcome hypoxia toward the enhancement of tumor therapy. This review summarized intelligent strategies utilizing nanomaterials to overcome tumor hypoxia toward enhancing cancer treatment in emerging studies.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr05501h