Nanostructure-Empowered Efficient Coupling of Light into Optical Fibers at Extraordinarily Large Angles
Coupling of light from free space to optical fibers is essential for many applications, while commonly used step-index optical fibers provide insufficient coupling efficiencies especially at large angles of incidence. Here, we demonstrate record-high coupling efficiencies achieved with dielectric na...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2020-10, Vol.7 (10), p.2834-2841 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coupling of light from free space to optical fibers is essential for many applications, while commonly used step-index optical fibers provide insufficient coupling efficiencies especially at large angles of incidence. Here, we demonstrate record-high coupling efficiencies achieved with dielectric nanostructures located on single-mode fiber end faces. We introduce a novel approach that allows fabricating dielectric nanostructures at the facet of a step-index optical fiber via an extended version of planar electron-beam based lithography. We demonstrate polarization- and angle-independent coupling of light into the fiber across a wide range of angles as large as 80°. We support our experimental results with an analytical model and extensive numerical simulations. Our results reveal the key properties of nanostructure-empowered fibers that may improve the performance of many optical devices requiring efficient collection of light, including quantum technologies (single-photon collection) or biophotonics (in vivo imaging). Our approach can be extended to other materials and geometries, merging fiber optics with high-index dielectric metasurfaces, allowing for unprecedented functionalities for the efficient control of light. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.0c01078 |