A Grid-Supporting Strategy for Cascaded H-Bridge PV Converter Using VSG Algorithm With Modular Active Power Reserve

The cascaded H-bridge (CHB) converter is a favorable candidate in the photovoltaic (PV) field due to its modular multilevel construction, which could pursue the maximum energy yield by adopting the maximum power point tracking (MPPT) strategy. However, with the increasing penetration of PV generatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-01, Vol.68 (1), p.186-197
Hauptverfasser: Zhang, Xing, Hu, Yuhua, Mao, Wang, Zhao, Tao, Wang, Mingda, Liu, Fang, Cao, Renxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cascaded H-bridge (CHB) converter is a favorable candidate in the photovoltaic (PV) field due to its modular multilevel construction, which could pursue the maximum energy yield by adopting the maximum power point tracking (MPPT) strategy. However, with the increasing penetration of PV generation, challenges are arising for the grid stability due to the deficiency of converter inertia and damping. To improve the system inertia besides the energy efficiency, this article proposes a control strategy for the CHB converter with the combination of MPPT and virtual synchronous generator (VSG). Taking advantage of the modularity of CHB converter, a proportion of the total PV power is reserved by the selected reserved cells to provide the power buffer between the VSG and PV power for grid frequency supporting, and the nonreserved cells are utilizing the MPPT to ensure the energy efficiency. With the proposed control strategy, the CHB converter could be equipped with the frequency regulation capacity without any energy storage device and the full use of PV power is realized, which is verified by the simulation and experimental results.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2019.2962492