Novel 3D Pd-Cu(OH)(2)/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater
Removal of NO3- is a challenging problem in wastewater treatment. Electrocatalysis shows a great potential to remove NO3- but selectively converting NO3- to N-2 is facing a low efficiency. Here, a novel 3D Pd-Cu(OH)(2)/CF cathode based electrocatalytic (EC) system was proposed that can rapidly and s...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-01, Vol.401, Article 123232 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Removal of NO3- is a challenging problem in wastewater treatment. Electrocatalysis shows a great potential to remove NO3- but selectively converting NO3- to N-2 is facing a low efficiency. Here, a novel 3D Pd-Cu(OH)(2)/CF cathode based electrocatalytic (EC) system was proposed that can rapidly and selectively convert NO3- to NH4', and further convert to N-2 simultaneously. The special designs for the system include: Cu(OH)2 nanowires were firstly grown on copper foam (CF) with excellent conductivity that features high specific surface area in enhancing NO3- absorption and conversion to NO2-. Then, palladium (Pd) with a superior photons activation capacity was doped on the Cu(OH)(2) nanowires to promote the reduction of NO2- to NH4. Then NH4 was quickly oxidized into N-2 by active chlorine. Finally, total nitrogen (TN) could easily be removed completely via above exhaustive cycle reactions. The 3D Pd-Cu(OH)(2)/CF cathode exhibits a 98.8 % conversion of NO3- to NH4 in 45 min with the reported highest removal rate of 0.017 cm(-2) min', which is 19.4 times higher than that of CF. The converted NH4+ was finally exhaustively oxidized to N-2 with a 98.7 % of TN removal in 60 min. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2020.123232 |