Assessment of Rice Developmental Stage Using Time Series UAV Imagery for Variable Irrigation Management

Rice is one of the three major crops in the world and is the major crop in Asia. Climate change and water resource shortages may result in decreases in rice yields and possible food shortage crises. In this study, water-saving farming management was tested, and IOT field water level monitoring was u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5354, Article 5354
Hauptverfasser: Yang, Chin-Ying, Yang, Ming-Der, Tseng, Wei-Cheng, Hsu, Yu-Chun, Li, Guan-Sin, Lai, Ming-Hsin, Wu, Dong-Hong, Lu, Hsiu-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice is one of the three major crops in the world and is the major crop in Asia. Climate change and water resource shortages may result in decreases in rice yields and possible food shortage crises. In this study, water-saving farming management was tested, and IOT field water level monitoring was used to regulate water inflow automatically. Plant height (PH) is an important phenotype to be used to determine difference in rice growth periods and yields using water-saving irrigation. An unmanned aerial vehicle (UAV) with an RGB camera captured sequential images of rice fields to estimate rice PH compared with PH measured on site for estimating rice growth stages. The test results, with two crop harvests in 2019, revealed that with adequate image calibration, the correlation coefficient between UAV-PH and field-PH was higher than 0.98, indicating that UAV images can accurately determine rice PH in the field and rice growth phase. The study demonstrated that water-saving farming is effective, decreasing water usage for the first and second crops of 2019 by 53.5% and 21.7%, respectively, without influencing the growth period and final yield. Coupled with an automated irrigation system, rice farming can be adaptive to water shortage situations.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185354