Nonlocal-to-Local Convergence of Cahn–Hilliard Equations: Neumann Boundary Conditions and Viscosity Terms

We consider a class of nonlocal viscous Cahn–Hilliard equations with Neumann boundary conditions for the chemical potential. The double-well potential is allowed to be singular (e.g. of logarithmic type), while the singularity of the convolution kernel does not fall in any available existence theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2021-01, Vol.239 (1), p.117-149
Hauptverfasser: Davoli, Elisa, Scarpa, Luca, Trussardi, Lara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of nonlocal viscous Cahn–Hilliard equations with Neumann boundary conditions for the chemical potential. The double-well potential is allowed to be singular (e.g. of logarithmic type), while the singularity of the convolution kernel does not fall in any available existence theory under Neumann boundary conditions. We prove well-posedness for the nonlocal equation in a suitable variational sense. Secondly, we show that the solutions to the nonlocal equation converge to the corresponding solutions to the local equation, as the convolution kernels approximate a Dirac delta. The asymptotic behaviour is analyzed by means of monotone analysis and Gamma convergence results, both when the limiting local Cahn–Hilliard equation is of viscous type and of pure type.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-020-01573-9