Chern-Ricci curvatures, holomorphic sectional curvature and Hermitian metrics

We present some formulae related to the Chern-Ricci curvatures and scalar curvatures of special Hermitian metrics. We prove that a compact locally conformal Kähler manifold with constant nonpositive holomorphic sectional curvature is Kähler. We also give examples of complete non-Kähler metrics with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2021-04, Vol.64 (4), p.763-780
Hauptverfasser: Chen, Haojie, Chen, Lingling, Nie, Xiaolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present some formulae related to the Chern-Ricci curvatures and scalar curvatures of special Hermitian metrics. We prove that a compact locally conformal Kähler manifold with constant nonpositive holomorphic sectional curvature is Kähler. We also give examples of complete non-Kähler metrics with pointwise negative constant but not globally constant holomorphic sectional curvature, and complete non-Kähler metrics with zero holomorphic sectional curvature and nonvanishing curvature tensors.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-019-9566-y