Some new mathematical models of the fractional-order system of human immune against IAV infection

Fractional derivative operators of non-integer order can be utilized as a powerful tool to model nonlinear fractional differential equations. In this paper, we propose numerical solutions for simulating fractional-order derivative operators with the power-law and exponential-law kernels. We construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences and engineering : MBE 2020-07, Vol.17 (5), p.4941-4969
Hauptverfasser: Srivastava, H. M., Saad, Khaled M., Gomez-Aguilar, J. F., Almadiy, Abdulrhman A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fractional derivative operators of non-integer order can be utilized as a powerful tool to model nonlinear fractional differential equations. In this paper, we propose numerical solutions for simulating fractional-order derivative operators with the power-law and exponential-law kernels. We construct the numerical schemes with the help the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation. These schemes are applied to simulate the dynamical fractional-order model of the immune response (FMIR) to the uncomplicated influenza A virus (IAV) infection, which focuses on the control of the infection by the innate and adaptive immunity. Numerical results are then presented to show the applicability and efficiency on the FMIR.
ISSN:1547-1063
1551-0018
1551-0018
DOI:10.3934/mbe.2020268