Synoptic Characteristics Related to Warm Sector Torrential Rainfall vents in South China During the Annually First Rainy Season

Warm-sector torrential rainfall (WSTR) events that occur in the annually first rainy season in south China are characterized by high rainfall intensity and low radar echo centroids. To understand the synoptic characteristics related to these features, 16 WSTR events that occurred in 2013-2017 were e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Tropical Meteorology 2020-09, Vol.26 (3), p.253-260
Hauptverfasser: Wu Ya-li, Gao Yu-dong, Chen De-hui, Meng Wei-guang, Lin Liang-xun, Lin Wen-shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Warm-sector torrential rainfall (WSTR) events that occur in the annually first rainy season in south China are characterized by high rainfall intensity and low radar echo centroids. To understand the synoptic characteristics related to these features, 16 WSTR events that occurred in 2013-2017 were examined with another 16 squall line (SL) events occurred during the same period as references. Composite analysis derived from ERA-Interim reanalysis data indicated the importance of the deep layer of warm and moist air for WSTR events. The most significant difference between WSTR and SL events lies in their low-level convergence and lifting; for WSTR events, the low-level convergence and lifting is much shallower with comparable or stronger intensity. The trumpet-shaped topography to the north of the WSTR centers is favorable for the development of such shallow convergences in WSTR events. Results in this study will provide references for future studies to improve the predictability of WSTR.
ISSN:1006-8775
DOI:10.46267/j.1006-8775.2020.023