3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma
Background: To establish a radiomic approach to identify epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients based on CT images, and to distinguish exon-19 deletion and exon-21 L858R mutation. Methods: Two hundred sixty-three patients who underwent pre-surgical co...
Gespeichert in:
Veröffentlicht in: | Translational lung cancer research 2020-08, Vol.9 (4), p.1212-1224 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: To establish a radiomic approach to identify epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients based on CT images, and to distinguish exon-19 deletion and exon-21 L858R mutation. Methods: Two hundred sixty-three patients who underwent pre-surgical contrast-enhanced CT and molecular testing were included, and randomly divided into the training (80%) and test (20%) cohort. Tumor images were three-dimensionally segmented to extract 1,672 radiomic features. Clinical features (age, gender, and smoking history) were added to build classification models together with radiomic features. Subsequently, the top-10 most relevant features were used to establish classifiers. For the classifying tasks including EGFR mutation, exon-19 deletion, and exon-21 L858R mutation, four logistic regression models were established for each task.
Results: The training and test cohort consisted of 210 and 53 patients, respectively. Among the established models, the highest accuracy and sensitivity among the four models were 75.5% (61.7-86.2%) and 92.9% (76.5-99.1%) to classify EGFR mutation, respectively. The highest specificity values were 86.7% (69.3-96.2%) and 70.4% (49.8-86.3%) to classify exon-19 deletion and exon-21 L858R mutation, respectively.
Conclusions: CT radiomics can sensitively identify the presence of EGFR mutation, and increase the certainty of distinguishing exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma patients. CT radiomics may become a helpful non-invasive biomarker to select EGFR mutation patients for invasive sampling. |
---|---|
ISSN: | 2218-6751 2226-4477 |
DOI: | 10.21037/tlcr-20-122 |