Construction and Evaluation of the Integrated Perception Ecological Environment Indicator (IPEEI) Based on the DPSIR Framework for Smart Sustainable Cities

Ecological environment evaluation is of great significance to achieve the Sustainable Development Goals (SDGs) and promote the harmonious development of economy, society, and environment. To evaluate environmental SDGs, single environmental indicators have been analyzed at national or large regional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-09, Vol.12 (17), p.7112, Article 7112
Hauptverfasser: Liu, Yingbing, Du, Wenying, Chen, Nengcheng, Wang, Xiaolei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ecological environment evaluation is of great significance to achieve the Sustainable Development Goals (SDGs) and promote the harmonious development of economy, society, and environment. To evaluate environmental SDGs, single environmental indicators have been analyzed at national or large regional scale in some literature, while the urban integrated environment is ignored. Therefore, it is necessary to systematically and quantically evaluate the sustainability of ecological environment integrating the water, soil, and air environment at the urban scale. This study aims to construct the Integrated Perception Ecological Environment Indicator (IPEEI) based on the Driver-Pressure-State-Impact-Response (DPSIR) framework to solve the above-mentioned problems. The IPEEI model was proposed based on the three-level association mechanism of the Domain-Theme-Element, and the DPSIR framework conforming to the relevant standards for indicator determination. Moreover, the multi-dimensional, multi-thematic, and multi-urban quantitative evaluations were conducted using the entropy weight method, and the comprehensive evaluation grades by the Jenks natural breaks classification method of the geospatial analysis. Nine cities in the Wuhan Metropolitan Area were selected as the experimental areas. The results were consistent with the Ecological Index and local government's planning and measures, which demonstrated that IPEEI can be effectively verified and applied for the evaluation of urban ecological environment sustainability.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12177112