Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(III)/Fe(II) cycle confined in the nanoscale interlayer of Fe(III)-saturated montmorillonite
Low cost, green, regenerable catalyst for persulfate activation is the popularly concerned topic for the degradation of persistent organic micropollutants in drinking water. In this work, natural montmorillonite (MMT) saturated with Fe(III) ions was used to activate peroxymonosulfate (PMS) for the d...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2020-09, Vol.182, p.116030-116030, Article 116030 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low cost, green, regenerable catalyst for persulfate activation is the popularly concerned topic for the degradation of persistent organic micropollutants in drinking water. In this work, natural montmorillonite (MMT) saturated with Fe(III) ions was used to activate peroxymonosulfate (PMS) for the degradation of atrazine in raw drinking water. Results showed that the adsorption of atrazine was quickly completed within 1 min and the percentage degradation was finally increased up to 94.1% in 60 min. The d001-spacing of MMT was enlarged to 2.91 nm at the most by Fe(III) saturation. Atrazine was adsorbed into the nanoscale interlayer of Fe(III)-saturated montmorillonite (Fe-MMT), where the Fe(III)/Fe(II) cycle was sustainably realized through the accelerated transformation of electrons between Fe(III) and PMS. Meanwhile, the in-situ generated Fe(II) accelerated the decomposition of PMS to further proceed the degradation of atrazine through the oxidation of HO• and SO4•- radicals. This nanoconfined effect of PMS activation by Fe(III) was further confirmed through the degradation of various micropollutants in the backgrounds of river water. The selective catalytic oxidation of micropollutants through PMS activation was attributed to the 2D mesoporous structure of Fe-MMT, inhibiting the interlayer adsorption of larger molecular backgrounds (humic acids etc.). Fe(III)-saturated montmorillonite (Fe-MMT) provided a feasible and scalable method of PMS activation by Fe(III) for the degradation of micropollutants in drinking water.
Mechanisms of atrazine degradation through PMS activation by Fe-MMT. [Display omitted]
•Fe(III)-saturated montmorillonite (Fe-MMT) was used to catalyze the PMS activation.•Fe(III)/Fe(II) cycle was realized in the nanoconfined interlayer of Fe-MMT.•Micropollutants were degraded through the oxidation of HO.• and SO4•- radicals.•Selective catalytic oxidation of micropollutants performed well in river water. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2020.116030 |