A 1-mm(2) CMOS-pipelined ADC with integrated folded cascode operational amplifier
Purpose - The purpose of this paper is to demonstrate the acceptable performance by using the limited input range towards lower open-loop DC gain operational amplifier (op-amp) of an 8-bit pipelined analog-to-digital converter (ADC) for mobile communication application. Design/methodology/approach -...
Gespeichert in:
Veröffentlicht in: | Microelectronics international 2020-09, Vol.37 (4), p.205-213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose - The purpose of this paper is to demonstrate the acceptable performance by using the limited input range towards lower open-loop DC gain operational amplifier (op-amp) of an 8-bit pipelined analog-to-digital converter (ADC) for mobile communication application.
Design/methodology/approach - An op-amp with folded cascode configuration is designed to provide the maximum open-loop DC gain without any gain-boosting technique. The impact of low open-loop DC gain is observed and analysed through the results of pre-, post-layout simulations and measurement of the ADC. The fabrication process technology used is Silterra 0.18-mu m CMOS process. The silicon area by the ADC is 1.08 mm(2).
Findings - Measured results show the differential non-linearity (DNL) error, integral non-linearity (INL) error, signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR) are within -0.2 to +0.2 LSB, -0.55 LSB for 0.4 Vpp input range, 22 and 27 dB, respectively, with 2 MHz input signal at the rate of 64 MS/s. The static power consumption is 40 mW with a supply voltage of 1.8 V.
Originality/value - The experimental results of ADC showed that by limiting the input range to +/- 0.2 V, this ADC is able to give a good reasonable performance. Open-loop DC gain of op-amp plays a critical role in ADC performance. Low open-loop DC gain results in stage-gain error of residue amplifier and, thus, leads to nonlinearity of output code. Nevertheless, lowering the input range enhances the linearity to +/- 0.2 LSB. |
---|---|
ISSN: | 1356-5362 1758-812X |
DOI: | 10.1108/MI-05-2020-0030 |