ALGORITHMS FOR #BIS-HARD PROBLEMS ON EXPANDER GRAPHS
We give a fully polynomial-time approximation scheme (FPTAS) and an efficient sampling algorithm for the high-fugacity hard-core model on bounded-degree bipartite expander graphs and the low-temperature ferromagnetic Potts model on bounded-degree expander graphs. The results apply, for example, to r...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2020-01, Vol.49 (4), p.681-710 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a fully polynomial-time approximation scheme (FPTAS) and an efficient sampling algorithm for the high-fugacity hard-core model on bounded-degree bipartite expander graphs and the low-temperature ferromagnetic Potts model on bounded-degree expander graphs. The results apply, for example, to random (bipartite) Delta-regular graphs, for which no efficient algorithms were known for these problems (with the exception of the Ising model) in the nonuniqueness regime of the infinite Delta-regular tree. We also find efficient counting and sampling algorithms for proper q-colorings of random Delta-regular bipartite graphs when q is sufficiently small as a function of Delta. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/19M1286669 |