ALGORITHMS FOR #BIS-HARD PROBLEMS ON EXPANDER GRAPHS

We give a fully polynomial-time approximation scheme (FPTAS) and an efficient sampling algorithm for the high-fugacity hard-core model on bounded-degree bipartite expander graphs and the low-temperature ferromagnetic Potts model on bounded-degree expander graphs. The results apply, for example, to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 2020-01, Vol.49 (4), p.681-710
Hauptverfasser: Jenssen, Matthew, Keevash, Peter, Perkins, Will
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a fully polynomial-time approximation scheme (FPTAS) and an efficient sampling algorithm for the high-fugacity hard-core model on bounded-degree bipartite expander graphs and the low-temperature ferromagnetic Potts model on bounded-degree expander graphs. The results apply, for example, to random (bipartite) Delta-regular graphs, for which no efficient algorithms were known for these problems (with the exception of the Ising model) in the nonuniqueness regime of the infinite Delta-regular tree. We also find efficient counting and sampling algorithms for proper q-colorings of random Delta-regular bipartite graphs when q is sufficiently small as a function of Delta.
ISSN:0097-5397
1095-7111
DOI:10.1137/19M1286669