Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability
α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from Vigna mungo (VM-αGal) seeds w...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2021, Vol.193 (1), p.238-256 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from
Vigna mungo
(VM-αGal) seeds were immobilized onto chitosan-coated magnetic nanoparticles for improved stability and repeated usage by magnetic separation. Parameters like precipitants (type, amount, and ratio), glutaraldehyde concentration, and enzyme load were optimized for the preparation of chitosan-coated magnetic nanocomposites of cross-linked VM-αGal (VM-αGal-MC) and VM-αGal (VM-αGal-M) resulted in 100% immobilization efficiency. Size and morphology of VM-αGal-M were studied through dynamic light scattering (DLS) and scanning electron microscopy (SEM), while Fourier transform infrared spectroscopy (FTIR) was used to study the chemical composition of VM-αGal-MC and VM-αGal-M. VM-αGal-MC and VM-αGal-M were found more active in a broad range of pH (3–8) and displayed optimal temperatures up to 25 °C higher than VM-αGal. Addition of non-ionic detergents (except Tween-40) improved VM-αGal-MC activity by up to 44% but negatively affected VM-αGal-M activity. Both VM-αGal-MC (15% residual activity after 21 min at 85 °C, E
d
92.42 kcal/mol) and VM-αGal-M (69.0% residual activity after 10 min at 75 °C, E
d
39.87 kcal/mol) showed remarkable thermal stability and repeatedly hydrolyzed the substrate for 10 cycles. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-020-03408-5 |