Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data

Federated learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning, however, comes at the cost of a significant com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-09, Vol.31 (9), p.3400-3413
Hauptverfasser: Sattler, Felix, Wiedemann, Simon, Muller, Klaus-Robert, Samek, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Federated learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning, however, comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods, however, are only of limited utility in the federated learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions, such as i.i.d. distribution of the client data, which typically cannot be found in federated learning. In this article, we propose sparse ternary compression (STC), a new compression framework that is specifically designed to meet the requirements of the federated learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms federated averaging in common federated learning scenarios. These results advocate for a paradigm shift in federated optimization toward high-frequency low-bitwidth communication, in particular in the bandwidth-constrained learning environments.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2019.2944481