Measuring the criticality of a Hopf bifurcation

This work is based on the observation that the first Poincaré–Lyapunov constant is a quadratic function of the coefficients of the two-dimensional vector field at a Hopf bifurcation. From a given parameter point, we find the distance to the “Hopf quadric.” This distance provides a measure of the cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-09, Vol.101 (4), p.2541-2549
Hauptverfasser: Uteshev, Alexei, Kalmár-Nagy, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is based on the observation that the first Poincaré–Lyapunov constant is a quadratic function of the coefficients of the two-dimensional vector field at a Hopf bifurcation. From a given parameter point, we find the distance to the “Hopf quadric.” This distance provides a measure of the criticality of the Hopf bifurcation. The viability of the approach is demonstrated through numerical examples.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-020-05914-x