Bayesian Quantification for Coherent Anti-Stokes Raman Scattering Spectroscopy

We propose a Bayesian statistical model for analyzing coherent anti-Stokes Raman scattering (CARS) spectra. Our quantitative analysis includes statistical estimation of constituent line-shape parameters, the underlying Raman signal, the error-corrected CARS spectrum, and the measured CARS spectrum....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-08, Vol.124 (32), p.7005-7012
Hauptverfasser: Härkönen, Teemu, Roininen, Lassi, Moores, Matthew T, Vartiainen, Erik M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a Bayesian statistical model for analyzing coherent anti-Stokes Raman scattering (CARS) spectra. Our quantitative analysis includes statistical estimation of constituent line-shape parameters, the underlying Raman signal, the error-corrected CARS spectrum, and the measured CARS spectrum. As such, this work enables extensive uncertainty quantification in the context of CARS spectroscopy. Furthermore, we present an unsupervised method for improving spectral resolution of Raman-like spectra requiring little to no a priori information. Finally, the recently proposed wavelet prism method for correcting the experimental artifacts in CARS is enhanced by using interpolation techniques for wavelets. The method is validated using CARS spectra of adenosine mono-, di-, and triphosphate in water, as well as equimolar aqueous solutions of d-fructose, d-glucose, and their disaccharide combination sucrose.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.0c04378