Using Committee Neural Network for Prediction of Pressure Drop in Two-Phase Microchannels
Numerous studies have proposed to correlate experimental results, however there are still significant errors in those predictions. In this study, an artificial neural network (ANN) is considered for a two-phase flow pressure drop in microchannels incorporating four neural network structures: multila...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-08, Vol.10 (15), p.5384, Article 5384 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous studies have proposed to correlate experimental results, however there are still significant errors in those predictions. In this study, an artificial neural network (ANN) is considered for a two-phase flow pressure drop in microchannels incorporating four neural network structures: multilayer perceptron (MLP), radial basis function (RBF), general regression (GR), and cascade feedforward (CF). The pressure drop predication by ANN uses six inputs (hydraulic diameter of channel, critical temperature of fluid, critical pressure of fluid, acentric factor of fluid, mass flux, and quality of vapor). According to the experimental data, for each network an optimal number of neurons in the hidden layer is considered in the range 10-11. A committee neural network (CNN) is fabricated through the genetic algorithm to improve the accuracy of the predictions. Ultimately, the genetic algorithm designates a weight to each ANN model, which represents the relative contribution of each ANN in the pressure drop predicting process for a two-phase flow within a microchannel. The assessment based on the statistical indexes reveals that the results are not similar for all models; the absolute average relative deviation percent for MLP, CF, GR, and CNN were obtained to be equal to 10.89, 10.65, 7.63, and 5.79, respectively. The CNN approach is demonstrated to be superior to many ANN techniques, even with simple linearity in the model. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10155384 |