A new observation for the normalized solution of the Schrödinger equation
We consider the following nonlinear Schrödinger equation in R N ( N ≥ 2 ) : - Δ u + λ u = g ( u ) , u ∈ H 1 ( R N ) , ∫ R N u 2 = c , where c > 0 is a given constant, λ ∈ R is a Lagrange multiplier, and g ∈ C 1 ( R , R ) . We deal with the case where the associated functional is not bounded from...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2020-09, Vol.115 (3), p.329-338 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the following nonlinear Schrödinger equation in
R
N
(
N
≥
2
)
:
-
Δ
u
+
λ
u
=
g
(
u
)
,
u
∈
H
1
(
R
N
)
,
∫
R
N
u
2
=
c
,
where
c
>
0
is a given constant,
λ
∈
R
is a Lagrange multiplier, and
g
∈
C
1
(
R
,
R
)
. We deal with the case where the associated functional is not bounded from below on the
L
2
sphere
S
(
c
)
=
u
∈
H
1
R
N
:
∫
R
N
u
2
=
c
. We show that the ground state energy is strictly decreasing with respect to
c
. Then we apply this property to give a new proof for the existence of ground state solutions via minimizing methods. We also obtain some other properties of the ground state energy. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-020-01468-x |