A new observation for the normalized solution of the Schrödinger equation

We consider the following nonlinear Schrödinger equation in R N ( N ≥ 2 ) : - Δ u + λ u = g ( u ) , u ∈ H 1 ( R N ) , ∫ R N u 2 = c , where c > 0 is a given constant, λ ∈ R is a Lagrange multiplier, and g ∈ C 1 ( R , R ) . We deal with the case where the associated functional is not bounded from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2020-09, Vol.115 (3), p.329-338
1. Verfasser: Yang, Zuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the following nonlinear Schrödinger equation in R N ( N ≥ 2 ) : - Δ u + λ u = g ( u ) , u ∈ H 1 ( R N ) , ∫ R N u 2 = c , where c > 0 is a given constant, λ ∈ R is a Lagrange multiplier, and g ∈ C 1 ( R , R ) . We deal with the case where the associated functional is not bounded from below on the L 2 sphere S ( c ) = u ∈ H 1 R N : ∫ R N u 2 = c . We show that the ground state energy is strictly decreasing with respect to c . Then we apply this property to give a new proof for the existence of ground state solutions via minimizing methods. We also obtain some other properties of the ground state energy.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-020-01468-x