Physicochemical and tribological properties of microalgae oil as biolubricant for hydrogenpowered engine

Hydrogen fuel offers a cleaner fuel alternative to fossil fuel due to more efficient burning as well as reduces the environmental and health issues brought by fossil fuel usage. In engine application, regardless of either pure hydrogen or in combination with air or/and other biofuel, all the moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2020-08, Vol.45 (42), p.22364-22381
Hauptverfasser: Cheah, Mei Yee, Ong, Hwai Chyuan, Zulkifli, Nurin Wahidah Mohd, Masjuki, Haji Hassan, Salleh, Aishah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen fuel offers a cleaner fuel alternative to fossil fuel due to more efficient burning as well as reduces the environmental and health issues brought by fossil fuel usage. In engine application, regardless of either pure hydrogen or in combination with air or/and other biofuel, all the moving parts are exposed to friction and wear, and lubricant is used to minimize friction and wear for optimum operation. Thus, in this study, the use of microalgae oil as an alternative biolubricant is evaluated from the physicochemical and tribological aspects. It is found that modified microalgae oil (MMO) has demonstrated great anti-friction and anti-wear potential, particularly the 10% modified microalgae oil blend (MMO-10). The coefficient of friction is reduced (up to 10.1%) and significant reductions of wear loss and surface roughness are obtained in comparison to pure poly-alpha-olefin. Lubricant's heat dissipation is also enhanced with MMO addition, demonstrating great prospect for MMO for hydrogen-powered engine utilization. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2019.11.020