Bloom Type Upper Bounds in the Product BMO Setting
We prove some Bloom type estimates in the product BMO setting. More specifically, for a bounded singular integral T n in R n and a bounded singular integral T m in R m we prove that ‖ [ T n 1 , [ b , T m 2 ] ] ‖ L p ( μ ) → L p ( λ ) ≲ [ μ ] A p , [ λ ] A p ‖ b ‖ BMO prod ( ν ) , where p ∈ ( 1 , ∞ )...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2020-07, Vol.30 (3), p.3181-3203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove some Bloom type estimates in the product BMO setting. More specifically, for a bounded singular integral
T
n
in
R
n
and a bounded singular integral
T
m
in
R
m
we prove that
‖
[
T
n
1
,
[
b
,
T
m
2
]
]
‖
L
p
(
μ
)
→
L
p
(
λ
)
≲
[
μ
]
A
p
,
[
λ
]
A
p
‖
b
‖
BMO
prod
(
ν
)
,
where
p
∈
(
1
,
∞
)
,
μ
,
λ
∈
A
p
and
ν
:
=
μ
1
/
p
λ
-
1
/
p
is the Bloom weight. Here
T
n
1
is
T
n
acting on the first variable,
T
m
2
is
T
m
acting on the second variable,
A
p
stands for the bi-parameter weights of
R
n
×
R
m
and
BMO
prod
(
ν
)
is a weighted product BMO space. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-019-00194-3 |