Bloom Type Upper Bounds in the Product BMO Setting

We prove some Bloom type estimates in the product BMO setting. More specifically, for a bounded singular integral T n in R n and a bounded singular integral T m in R m we prove that ‖ [ T n 1 , [ b , T m 2 ] ] ‖ L p ( μ ) → L p ( λ ) ≲ [ μ ] A p , [ λ ] A p ‖ b ‖ BMO prod ( ν ) , where p ∈ ( 1 , ∞ )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2020-07, Vol.30 (3), p.3181-3203
Hauptverfasser: Li, Kangwei, Martikainen, Henri, Vuorinen, Emil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove some Bloom type estimates in the product BMO setting. More specifically, for a bounded singular integral T n in R n and a bounded singular integral T m in R m we prove that ‖ [ T n 1 , [ b , T m 2 ] ] ‖ L p ( μ ) → L p ( λ ) ≲ [ μ ] A p , [ λ ] A p ‖ b ‖ BMO prod ( ν ) , where p ∈ ( 1 , ∞ ) , μ , λ ∈ A p and ν : = μ 1 / p λ - 1 / p is the Bloom weight. Here T n 1 is T n acting on the first variable, T m 2 is T m acting on the second variable, A p stands for the bi-parameter weights of R n × R m and BMO prod ( ν ) is a weighted product BMO space.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-019-00194-3