Short-Term Effects of Fertilization on Dissolved Organic Matter in Soil Leachate

Besides the importance of dissolved organic matter (DOM) in soil biogeochemical processes, there is still a debate on how agricultural intensification affects the leaching of terrestrial DOM into adjacent aquatic ecosystems. In order to close this linkage, we conducted a short-term (45 day) lysimete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-06, Vol.12 (6), p.1617, Article 1617
Hauptverfasser: Tiefenbacher, Alexandra, Weigelhofer, Gabriele, Klik, Andreas, Pucher, Matthias, Santner, Jakob, Wenzel, Walter, Eder, Alexander, Strauss, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Besides the importance of dissolved organic matter (DOM) in soil biogeochemical processes, there is still a debate on how agricultural intensification affects the leaching of terrestrial DOM into adjacent aquatic ecosystems. In order to close this linkage, we conducted a short-term (45 day) lysimeter experiment with silt loam and sandy loam undisturbed/intact soil cores. Mineral (calcium ammonium nitrate) or organic (pig slurry) fertilizer was applied on the soil surface with a concentration equivalent to 130 kg N ha(-1). On average, amounts of leached DOC over 45 days ranged between 20.4 mg (silt loam, mineral fertilizer) and 34.4 mg (sandy loam, organic fertilizer). Both, mineral and organic fertilization of a silt loam reduced concentration of dissolved organic carbon (DOC) in the leachate and shifted its composition towards a microbial-like signature (BIX) with a higher aromaticity (Fi) and a lower molecular size (E2:E3). However, in sandy loam only mineral fertilization affected organic matter leaching. There, lowered DOC concentrations with a smaller molecular size (E2:E3) could be detected. The overall effect of fertilization on DOC leaching and DOM composition was interrelated with soil texture and limited to first 12 days. Our results highlight the need for management measures, which prevent or reduce fast flow paths leading soil water directly into aquatic systems, such as surface flow, fast subsurface flow, or drainage water.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12061617