Temporal and Spatial Variation of Soil Moisture and Its Possible Impact on Regional Air Temperature in China

Soil moisture is closely related to the hydrosphere, atmosphere, and biosphere, which makes it one of the most significant climate variables. Using data from the National Environmental Forecasting Center (NCEP), this paper analyzes the temporal and spatial characteristics of soil moisture at a depth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-06, Vol.12 (6), p.1807, Article 1807
Hauptverfasser: Han, Guolin, Wang, Jialin, Pan, Yuying, Huang, Na, Zhang, Ziyuan, Peng, Ruiqi, Wang, Zizhong, Sun, Guofeng, Liu, Cong, Ma, Shangqian, Song, Yu, Pan, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil moisture is closely related to the hydrosphere, atmosphere, and biosphere, which makes it one of the most significant climate variables. Using data from the National Environmental Forecasting Center (NCEP), this paper analyzes the temporal and spatial characteristics of soil moisture at a depth of 0-10 cm in China for the period of 1948 to 2014. In addition, the soil moisture's possible interaction with air temperature is explored. Mainly using statistical analysis, the results showed that annual soil moisture decreased significantly (p< 0.01) in most areas. The tendency of decreasing soil moisture was relatively higher in spring and autumn than that in summer and winter. As to the national annual average soil moisture, there was a sudden change in the 1970s. The soil moisture had a relatively high value with a larger deviation before the abrupt change, but after that, the soil moisture was at a relatively low level with a smaller deviation. It was also found that the soil moisture at 0-10 cm showed a negative correlation with the 2-m air temperature above ground in the northern part of China, where the speed of the temperature rise was higher. The results are expected to help improve the understanding of the link between regional soil moisture variation and climate change.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12061807