Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems
Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2021-02, Vol.43 (4), p.802-811, Article 0142331220938208 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications. |
---|---|
ISSN: | 0142-3312 1477-0369 |
DOI: | 10.1177/0142331220938208 |