Substitutional Fluorine Doping of Large-Area Molybdenum Disulfide Monolayer Films for Flexible Inverter Device Arrays

Reliable and controllable doping of transition metal dichalcogenides (TMDCs) is a mandatory requirement for practical large-scale electronic applications. However, most of the literature on the doping methodologies of TMDCs has focused on n-type doping and multilayer TMDC rather than a monolayer one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-07, Vol.12 (28), p.31804-31809
Hauptverfasser: Chee, Sang-Soo, Jang, Hanbyeol, Lee, Kayoung, Ham, Moon-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliable and controllable doping of transition metal dichalcogenides (TMDCs) is a mandatory requirement for practical large-scale electronic applications. However, most of the literature on the doping methodologies of TMDCs has focused on n-type doping and multilayer TMDC rather than a monolayer one enabling large-scale growth. Herein, we report substitutional fluorine doping of a chemical vapor deposition (CVD)-grown molybdenum disulfide (MoS2) monolayer film using a delicate SF6 plasma treatment. Our SF6-treated MoS2 monolayer shows a p-type doping effect with fluorine substitution. The doping concentration is controlled by the plasma treatment time (2–4.9 atom %) while maintaining the structural integrity of the MoS2 monolayer. Such reliable and tunable substitutional doping is attributed to preventing direct ion bombardment to the MoS2 monolayer by our gentle plasma treatment system. Finally, we fabricated MoS2 homojunction flexible inverter device arrays based on the pristine and SF6-treated MoS2 monolayer. A clear switching behavior is observed, and the voltage gain is approximately 8 at an applied V DD of 2 V, which is comparable to that of CVD-grown MoS2-based inverter devices reported previously. Obtained voltage gain is also stable even after 500 bending cycles at an applied strain of 0.5%.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c07824