Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values

[Display omitted] Phellinus gilvus (Schwein.) Pat, a species of ‘Sanghuang’, has been well-documented for various medicinal uses, but the genome information and active constituents are largely unknown. Here, we sequenced the whole-genome of P. gilvus, identified phenylpropanoids as its key anti-canc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced research 2020-07, Vol.24, p.325-335
Hauptverfasser: Huo, Jinxi, Zhong, Shi, Du, Xin, Cao, Yinglong, Wang, Wenqiong, Sun, Yuqing, Tian, Yu, Zhu, Jianxun, Chen, Jine, Xuan, Lijiang, Wu, Chongming, Li, Yougui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Phellinus gilvus (Schwein.) Pat, a species of ‘Sanghuang’, has been well-documented for various medicinal uses, but the genome information and active constituents are largely unknown. Here, we sequenced the whole-genome of P. gilvus, identified phenylpropanoids as its key anti-cancer components, and deduced their biosynthesis pathways. A 41.11-Mb genome sequence was assembled and the heatmap created with high-throughput chromosome conformation capture techniques data suggested all bins could be clearly divided into 11 pseudochromosomes. Cellular experiments showed that P. gilvus fruiting body was more effective to inhibit hepatocellular carcinoma cells than mycelia. High resolution electrospray ionization mass spectroscopy (HR-ESI-MS) analysis revealed P. gilvus fruiting body was rich in phenylpropanoids, and several unique phenylpropanoids in Phellinus spp. exhibited potent anti-carcinogenesis activity. Based on genomic, HR-ESI-MS information and differentially expressed genes in transcriptome analysis, we deduced the biosynthesis pathway of four major phenylpropanoids in P. gilvus. Transcriptome analysis revealed the deduced genes expressions were synergistically changed with the production of phenylpropanoids. The optimal candidate genes of phenylpropanoids’ synthesis pathway were screened by molecular docking analysis. Overall, our results provided a high-quality genomic data of P. gilvus and inferred biosynthesis pathways of four phenylpropanoids with potent anti-carcinogenesis activities. These will be a valuable resource for further genetic improvement and effective use of the P. gilvus.
ISSN:2090-1232
2090-1224
DOI:10.1016/j.jare.2020.04.011