Self-Assembly of Hybrid Lipid Membranes Doped with Hydrophobic Organic Molecules at the Water/Air Interface
Because of their unique properties, including an ultrathin thickness (3-4 nm), ultrahigh resistivity, fluidity and self-assembly ability, lipid bilayers can be readily functionalized and have been used in various applications such as bio-sensors and bio-devices. In this study, we introduced a planar...
Gespeichert in:
Veröffentlicht in: | Journal of visualized experiments 2020-05 (159), Article 60957 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because of their unique properties, including an ultrathin thickness (3-4 nm), ultrahigh resistivity, fluidity and self-assembly ability, lipid bilayers can be readily functionalized and have been used in various applications such as bio-sensors and bio-devices. In this study, we introduced a planar organic molecule: copper (II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) to dope lipid membranes. The CuPc/lipid hybrid membrane forms at the water/air interface by self-assembly. In this membrane, the hydrophobic CuPc molecules are located between the hydrophobic tails of lipid molecules, forming a lipid/CuPc/lipid sandwich structure. Interestingly, an air-stable hybrid lipid bilayer can be readily formed by transferring the hybrid membrane onto a Si substrate. We report a straightforward method for incorporating nanomaterials into a lipid bilayer system, which represents a new methodology for the fabrication of biosensors and biodevices. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/60957 |