Self-Assembly of Hybrid Lipid Membranes Doped with Hydrophobic Organic Molecules at the Water/Air Interface

Because of their unique properties, including an ultrathin thickness (3-4 nm), ultrahigh resistivity, fluidity and self-assembly ability, lipid bilayers can be readily functionalized and have been used in various applications such as bio-sensors and bio-devices. In this study, we introduced a planar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualized experiments 2020-05 (159), Article 60957
Hauptverfasser: Feng, Xingyao, Ma, Teng, Tadaki, Daisuke, Hirano-Iwata, Ayumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of their unique properties, including an ultrathin thickness (3-4 nm), ultrahigh resistivity, fluidity and self-assembly ability, lipid bilayers can be readily functionalized and have been used in various applications such as bio-sensors and bio-devices. In this study, we introduced a planar organic molecule: copper (II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) to dope lipid membranes. The CuPc/lipid hybrid membrane forms at the water/air interface by self-assembly. In this membrane, the hydrophobic CuPc molecules are located between the hydrophobic tails of lipid molecules, forming a lipid/CuPc/lipid sandwich structure. Interestingly, an air-stable hybrid lipid bilayer can be readily formed by transferring the hybrid membrane onto a Si substrate. We report a straightforward method for incorporating nanomaterials into a lipid bilayer system, which represents a new methodology for the fabrication of biosensors and biodevices.
ISSN:1940-087X
1940-087X
DOI:10.3791/60957