Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems

In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2021-02, Vol.43 (3), p.497-509, Article 0142331220932376
Hauptverfasser: Nassajian, Gholamreza, Balochian, Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 3
container_start_page 497
container_title Transactions of the Institute of Measurement and Control
container_volume 43
creator Nassajian, Gholamreza
Balochian, Saeed
description In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to estimate a time continuous fractional order nonlinear system with unknown term in its dynamic, single-layer and double-layer RBF neural network is used. First, a parallel-series neural network observer is designed for state estimation. Weights of the neural network are updated adaptively and updating laws are presented in fractional order form. Using Lyapunov method, it is proved that state estimation error and weight estimation error of the neural network are bounded. Parameters of the neural estimator converge to ideal parameters which satisfy excitation condition stability. Then, multi-model estimation structure of fractional order nonlinear systems is presented and its application in fault detection is investigated. Finally, simulation results are presented to show efficiency of the proposed method.
doi_str_mv 10.1177/0142331220932376
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000545951700001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331220932376</sage_id><sourcerecordid>2486435016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d22359c884e075287a79de256c44c038a6b4c2679aff128e58caf5519d26102a3</originalsourceid><addsrcrecordid>eNqNkctLAzEQh4MoWB93jwGPspp3do9SfIHiRc9Lmp0tqdtEkyzFg_-7aSsKguBpAvN9w8wvCJ1Qck6p1heECsY5ZYw0nHGtdtCECq0rwlWziybrdrXu76ODlBaEECGUmKCPh3HIrlqGDgYMKbulyS54PCbn59jDGM1QSl6F-IKN73BvioA7yGA3oCusf_Fh5XGRAdvgs_NjGBPuo9kwZUKIHUTsgx-cBxNxek8ZlukI7fVmSHD8VQ_R8_XV0_S2un-8uZte3leWkyZXHWNcNrauBRAtWa2NbjpgUlkhLOG1UTNhmdKN6XvKapC1Nb2UtOmYooQZfohOt3NfY3gby5ntIoyxLJZaJmoluCRUFYpsKRtDShH69jWWPOJ7S0m7Drn9HXJRzrbKCmahT9aBt_CtlZSlkI2kurwILXT9f3rq8uYrpmH0uajVVk1mDj_b_7nYJ3S2nns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486435016</pqid></control><display><type>article</type><title>Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems</title><source>Access via SAGE</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Nassajian, Gholamreza ; Balochian, Saeed</creator><creatorcontrib>Nassajian, Gholamreza ; Balochian, Saeed</creatorcontrib><description>In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to estimate a time continuous fractional order nonlinear system with unknown term in its dynamic, single-layer and double-layer RBF neural network is used. First, a parallel-series neural network observer is designed for state estimation. Weights of the neural network are updated adaptively and updating laws are presented in fractional order form. Using Lyapunov method, it is proved that state estimation error and weight estimation error of the neural network are bounded. Parameters of the neural estimator converge to ideal parameters which satisfy excitation condition stability. Then, multi-model estimation structure of fractional order nonlinear systems is presented and its application in fault detection is investigated. Finally, simulation results are presented to show efficiency of the proposed method.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331220932376</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Automation &amp; Control Systems ; Fault detection ; Instruments &amp; Instrumentation ; Mathematical models ; Neural networks ; Nonlinear systems ; Parameter estimation ; Science &amp; Technology ; State estimation ; Structural stability ; Technology</subject><ispartof>Transactions of the Institute of Measurement and Control, 2021-02, Vol.43 (3), p.497-509, Article 0142331220932376</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000545951700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c309t-d22359c884e075287a79de256c44c038a6b4c2679aff128e58caf5519d26102a3</citedby><cites>FETCH-LOGICAL-c309t-d22359c884e075287a79de256c44c038a6b4c2679aff128e58caf5519d26102a3</cites><orcidid>0000-0003-3137-9167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331220932376$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331220932376$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21826,27931,27932,39265,43628,43629</link.rule.ids></links><search><creatorcontrib>Nassajian, Gholamreza</creatorcontrib><creatorcontrib>Balochian, Saeed</creatorcontrib><title>Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems</title><title>Transactions of the Institute of Measurement and Control</title><addtitle>T I MEAS CONTROL</addtitle><description>In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to estimate a time continuous fractional order nonlinear system with unknown term in its dynamic, single-layer and double-layer RBF neural network is used. First, a parallel-series neural network observer is designed for state estimation. Weights of the neural network are updated adaptively and updating laws are presented in fractional order form. Using Lyapunov method, it is proved that state estimation error and weight estimation error of the neural network are bounded. Parameters of the neural estimator converge to ideal parameters which satisfy excitation condition stability. Then, multi-model estimation structure of fractional order nonlinear systems is presented and its application in fault detection is investigated. Finally, simulation results are presented to show efficiency of the proposed method.</description><subject>Automation &amp; Control Systems</subject><subject>Fault detection</subject><subject>Instruments &amp; Instrumentation</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Parameter estimation</subject><subject>Science &amp; Technology</subject><subject>State estimation</subject><subject>Structural stability</subject><subject>Technology</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkctLAzEQh4MoWB93jwGPspp3do9SfIHiRc9Lmp0tqdtEkyzFg_-7aSsKguBpAvN9w8wvCJ1Qck6p1heECsY5ZYw0nHGtdtCECq0rwlWziybrdrXu76ODlBaEECGUmKCPh3HIrlqGDgYMKbulyS54PCbn59jDGM1QSl6F-IKN73BvioA7yGA3oCusf_Fh5XGRAdvgs_NjGBPuo9kwZUKIHUTsgx-cBxNxek8ZlukI7fVmSHD8VQ_R8_XV0_S2un-8uZte3leWkyZXHWNcNrauBRAtWa2NbjpgUlkhLOG1UTNhmdKN6XvKapC1Nb2UtOmYooQZfohOt3NfY3gby5ntIoyxLJZaJmoluCRUFYpsKRtDShH69jWWPOJ7S0m7Drn9HXJRzrbKCmahT9aBt_CtlZSlkI2kurwILXT9f3rq8uYrpmH0uajVVk1mDj_b_7nYJ3S2nns</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Nassajian, Gholamreza</creator><creator>Balochian, Saeed</creator><general>SAGE Publications</general><general>Sage</general><general>Sage Publications Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3137-9167</orcidid></search><sort><creationdate>202102</creationdate><title>Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems</title><author>Nassajian, Gholamreza ; Balochian, Saeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d22359c884e075287a79de256c44c038a6b4c2679aff128e58caf5519d26102a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation &amp; Control Systems</topic><topic>Fault detection</topic><topic>Instruments &amp; Instrumentation</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Parameter estimation</topic><topic>Science &amp; Technology</topic><topic>State estimation</topic><topic>Structural stability</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nassajian, Gholamreza</creatorcontrib><creatorcontrib>Balochian, Saeed</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nassajian, Gholamreza</au><au>Balochian, Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><stitle>T I MEAS CONTROL</stitle><date>2021-02</date><risdate>2021</risdate><volume>43</volume><issue>3</issue><spage>497</spage><epage>509</epage><pages>497-509</pages><artnum>0142331220932376</artnum><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to estimate a time continuous fractional order nonlinear system with unknown term in its dynamic, single-layer and double-layer RBF neural network is used. First, a parallel-series neural network observer is designed for state estimation. Weights of the neural network are updated adaptively and updating laws are presented in fractional order form. Using Lyapunov method, it is proved that state estimation error and weight estimation error of the neural network are bounded. Parameters of the neural estimator converge to ideal parameters which satisfy excitation condition stability. Then, multi-model estimation structure of fractional order nonlinear systems is presented and its application in fault detection is investigated. Finally, simulation results are presented to show efficiency of the proposed method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331220932376</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3137-9167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2021-02, Vol.43 (3), p.497-509, Article 0142331220932376
issn 0142-3312
1477-0369
language eng
recordid cdi_webofscience_primary_000545951700001CitationCount
source Access via SAGE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Automation & Control Systems
Fault detection
Instruments & Instrumentation
Mathematical models
Neural networks
Nonlinear systems
Parameter estimation
Science & Technology
State estimation
Structural stability
Technology
title Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-model%20estimation%20using%20neural%20network%20and%20fault%20detection%20in%20unknown%20time%20continuous%20fractional%20order%20nonlinear%20systems&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Nassajian,%20Gholamreza&rft.date=2021-02&rft.volume=43&rft.issue=3&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.artnum=0142331220932376&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331220932376&rft_dat=%3Cproquest_webof%3E2486435016%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486435016&rft_id=info:pmid/&rft_sage_id=10.1177_0142331220932376&rfr_iscdi=true