Multi-model estimation using neural network and fault detection in unknown time continuous fractional order nonlinear systems

In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2021-02, Vol.43 (3), p.497-509, Article 0142331220932376
Hauptverfasser: Nassajian, Gholamreza, Balochian, Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, multi-model estimation and fault detection using neural network is proposed for an unknown time continuous fractional order nonlinear system. Fractional differentiation is considered based on Caputo concept and the fractional order is considered to be between 0 and 1. In order to estimate a time continuous fractional order nonlinear system with unknown term in its dynamic, single-layer and double-layer RBF neural network is used. First, a parallel-series neural network observer is designed for state estimation. Weights of the neural network are updated adaptively and updating laws are presented in fractional order form. Using Lyapunov method, it is proved that state estimation error and weight estimation error of the neural network are bounded. Parameters of the neural estimator converge to ideal parameters which satisfy excitation condition stability. Then, multi-model estimation structure of fractional order nonlinear systems is presented and its application in fault detection is investigated. Finally, simulation results are presented to show efficiency of the proposed method.
ISSN:0142-3312
1477-0369
DOI:10.1177/0142331220932376