A strong convergence theorem for maximal monotone operators in Banach spaces with applications

An algorithm is constructed to approximate a zero of a maximal monotone operator in a uniformly convex and uniformly smooth real Banach space. The sequence of the algorithm is proved to converge strongly to a zero of the maximal monotone map. In the case where the Banach space is a real Hilbert spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carpathian Journal of Mathematics 2020-01, Vol.36 (2), p.229-240
Hauptverfasser: Chidume, C. E., De Souza, G. S., Romanus, O. M., Nnyaba, U. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm is constructed to approximate a zero of a maximal monotone operator in a uniformly convex and uniformly smooth real Banach space. The sequence of the algorithm is proved to converge strongly to a zero of the maximal monotone map. In the case where the Banach space is a real Hilbert space, our theorem complements the celebrated proximal point algorithm of Martinet and Rockafellar. Furthermore, our convergence theorem is applied to approximate a solution of a Hammerstein integral equation in our general setting. Finally, numerical experiments are presented to illustrate the convergence of our algorithm.
ISSN:1584-2851
1843-4401
DOI:10.37193/CJM.2020.02.07