A strong convergence theorem for maximal monotone operators in Banach spaces with applications
An algorithm is constructed to approximate a zero of a maximal monotone operator in a uniformly convex and uniformly smooth real Banach space. The sequence of the algorithm is proved to converge strongly to a zero of the maximal monotone map. In the case where the Banach space is a real Hilbert spac...
Gespeichert in:
Veröffentlicht in: | Carpathian Journal of Mathematics 2020-01, Vol.36 (2), p.229-240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An algorithm is constructed to approximate a zero of a maximal monotone operator in a uniformly convex and uniformly smooth real Banach space. The sequence of the algorithm is proved to converge strongly to a zero of the maximal monotone map. In the case where the Banach space is a real Hilbert space, our theorem complements the celebrated proximal point algorithm of Martinet and Rockafellar. Furthermore, our convergence theorem is applied to approximate a solution of a Hammerstein integral equation in our general setting. Finally, numerical experiments are presented to illustrate the convergence of our algorithm. |
---|---|
ISSN: | 1584-2851 1843-4401 |
DOI: | 10.37193/CJM.2020.02.07 |