N-Phase Local Expansion Ratio for Characterizing Out-of-Phase Lung Ventilation

Out-of-phase ventilation occurs when local regions of the lung reach their maximum or minimum volumes at breathing phases other than the global end inhalation or exhalation phases. This paper presents the N-phase local expansion ratio (LER N ) as a surrogate for lung ventilation. A common approach t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.2025-2034
Hauptverfasser: Shao, Wei, Patton, Taylor J., Gerard, Sarah E., Pan, Yue, Reinhardt, Joseph M., Durumeric, Oguz C., Bayouth, John E., Christensen, Gary E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Out-of-phase ventilation occurs when local regions of the lung reach their maximum or minimum volumes at breathing phases other than the global end inhalation or exhalation phases. This paper presents the N-phase local expansion ratio (LER N ) as a surrogate for lung ventilation. A common approach to estimate lung ventilation is to use image registration to align the end exhalation and inhalation 3DCT images and then analyze the resulting correspondence map. This 2-phase local expansion ratio (LER 2 ) is limited because it ignores out-of-phase ventilation and thus may underestimate local lung ventilation. To overcome this limitation, LER N measures the maximum ratio of local expansion and contraction over the entire breathing cycle. Comparing LER 2 to LER N provides a means for detecting and characterizing locations of the lung that experience out-of-phase ventilation. We present a novel in-phase/out-of-phase ventilation (IOV) function plot to visualize and measure the amount of high-function IOV that occurs during a breathing cycle. Treatment planning 4DCT scans collected during coached breathing from 32 human subjects with lung cancer were analyzed in this study. Results show that out-of-phase breathing occurred in all subjects and that the spatial distribution of out-of-phase ventilation varied from subject to subject. For the 32 subjects analyzed, 50% of the out-of-phase regions on average were mislabeled as low-function by LER 2 (high-function threshold of 1.1, IOV threshold of 1.05). 4DCT and Xenon-enhanced CT of four sheep showed that LER 8 is more accurate than LER2 for measuring lung ventilation.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2019.2963083