Classification and recognition of computed tomography images using image reconstruction and information fusion methods
In this paper, we propose a diagnosis and classification method of hydrocephalus computed tomography (CT) images using deep learning and image reconstruction methods. The proposed method constructs pathological features differing from the other healthy tissues. This method tries to improve the accur...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2021-03, Vol.77 (3), p.2645-2666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a diagnosis and classification method of hydrocephalus computed tomography (CT) images using deep learning and image reconstruction methods. The proposed method constructs pathological features differing from the other healthy tissues. This method tries to improve the accuracy of pathological images identification and diagnosis. Identification of pathological features from CT images is an essential subject for the diagnosis and treatment of diseases. However, it is difficult to accurately distinguish pathological features owing to the variability of appearances, fuzzy boundaries, heterogeneous densities, shapes and sizes of lesions, etc. Some study results reported that the ResNet network has a better classification and diagnosis performance than other methods, and it has broad application prospectives in the identification of CT images. We use an improved ResNet network as a classification model with our proposed image reconstruction and information fusion methods. First, we evaluate a classification experiment using the hydrocephalus CT image datasets. Through the comparative experiments, we found that gradient features play an important role in the classification of hydrocephalus CT images. The classification effect of CT images with small information entropy is excellent in the evaluation of hydrocephalus CT images. A reconstructed image containing two channels of gradient features and one channel of LBP features is very effective in classification. Second, we apply our proposed method in classification experiments on CT images of colonography polyps for an evaluation. The experimental results have consistency with the hydrocephalus classification evaluation. It shows that the method is universal and suitable for classification of CT images in these two applications for the diagnosis of diseases. The original features of CT images are not ideal characteristics in classification, and the reconstructed image and information fusion methods have a great effect on CT images classification for pathological diagnosis. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-020-03367-y |