Scaling for steady and traveling shock wave/turbulent boundary layer interactions

Shock-wave/boundary-layer interactions (SW–BLIs) play an important role in a wide range of transonic, supersonic and hypersonic applications. Fundamental studies on stationary interactions have been conducted extensively during the last 60 years. However, unsteady SWBLIs with traveling shock fronts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2020, Vol.61 (7), Article 156
Hauptverfasser: Toure, P. S. R., Schuelein, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shock-wave/boundary-layer interactions (SW–BLIs) play an important role in a wide range of transonic, supersonic and hypersonic applications. Fundamental studies on stationary interactions have been conducted extensively during the last 60 years. However, unsteady SWBLIs with traveling shock fronts have been little studied on canonical geometries. In the present experimental investigation, the influence of a uniformly moving impinging shock on the separated SWBLI flow is analyzed, with a freestream Mach number of 3 and a traveling Mach number in upstream direction of 0.5. To evaluate this effect, stationary reference SWBLIs have been investigated in a wide ranging study. A scaling method from the literature has been enhanced to drastically reduce the data scattering using a new approach accounting for the Reynolds number influence. The results gathered from the traveling interactions were within the spread of reference data, considering the true shock-wave Mach number of 3.5. The validity of the modified scaling approach to describe the interaction length in cases with steady and traveling shock-wave/turbulent-boundary-layer interactions is discussed. Graphic abstract
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-020-02989-5