Cross-Component Prediction in HEVC
Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2020-06, Vol.30 (6), p.1699-1708 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1708 |
---|---|
container_issue | 6 |
container_start_page | 1699 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 30 |
creator | Kim, Woo-Shik Pu, Wei Khairat, Ali Siekmann, Mischa Sole, Joel Chen, Jianle Karczewicz, Marta Nguyen, Tung Marpe, Detlev |
description | Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively. |
doi_str_mv | 10.1109/TCSVT.2015.2496821 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2410518252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314885</ieee_id><sourcerecordid>2410518252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5-Ab0UPbdO0kz-HKWsrrCgYN1rSNsEurhtTbsHv72pu3iax_DezONHyC2FjFLQj2XxsS0zBhQzxrVQjJ6RBUVUKWOA51ED0jSu8ZJcjeMOgHLF5YLcF6Efx7To90PfuW5K3oNr2npq-y5pu2S92hbX5MLbr9HdnOaSfD6vymKdbt5eXounTVrnAqdU8wpq76nWoq64tUI5aBCFrizFXEvmQEqF2nIrqbaNEr6CytYenPACbb4kD8e7Q-i_D26czK4_hC6-NIzP_RVDFl3s6Krn4sF5M4R2b8OPoWBmFuaPhZlZmBOLGLo7hlrn3H9A5hGCwvwXoqtY5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410518252</pqid></control><display><type>article</type><title>Cross-Component Prediction in HEVC</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Woo-Shik ; Pu, Wei ; Khairat, Ali ; Siekmann, Mischa ; Sole, Joel ; Chen, Jianle ; Karczewicz, Marta ; Nguyen, Tung ; Marpe, Detlev</creator><creatorcontrib>Kim, Woo-Shik ; Pu, Wei ; Khairat, Ali ; Siekmann, Mischa ; Sole, Joel ; Chen, Jianle ; Karczewicz, Marta ; Nguyen, Tung ; Marpe, Detlev</creatorcontrib><description>Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2015.2496821</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Color ; Color coding ; Color decorrelation ; Correlation ; Decoding ; Delays ; Encoding ; High Efficiency Video Coding (HEVC) ; Standardization ; Transforms ; Video coding ; video coding standards ; Video compression</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2020-06, Vol.30 (6), p.1699-1708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</citedby><cites>FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7314885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Woo-Shik</creatorcontrib><creatorcontrib>Pu, Wei</creatorcontrib><creatorcontrib>Khairat, Ali</creatorcontrib><creatorcontrib>Siekmann, Mischa</creatorcontrib><creatorcontrib>Sole, Joel</creatorcontrib><creatorcontrib>Chen, Jianle</creatorcontrib><creatorcontrib>Karczewicz, Marta</creatorcontrib><creatorcontrib>Nguyen, Tung</creatorcontrib><creatorcontrib>Marpe, Detlev</creatorcontrib><title>Cross-Component Prediction in HEVC</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.</description><subject>Accuracy</subject><subject>Color</subject><subject>Color coding</subject><subject>Color decorrelation</subject><subject>Correlation</subject><subject>Decoding</subject><subject>Delays</subject><subject>Encoding</subject><subject>High Efficiency Video Coding (HEVC)</subject><subject>Standardization</subject><subject>Transforms</subject><subject>Video coding</subject><subject>video coding standards</subject><subject>Video compression</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LxDAQxYMouK5-Ab0UPbdO0kz-HKWsrrCgYN1rSNsEurhtTbsHv72pu3iax_DezONHyC2FjFLQj2XxsS0zBhQzxrVQjJ6RBUVUKWOA51ED0jSu8ZJcjeMOgHLF5YLcF6Efx7To90PfuW5K3oNr2npq-y5pu2S92hbX5MLbr9HdnOaSfD6vymKdbt5eXounTVrnAqdU8wpq76nWoq64tUI5aBCFrizFXEvmQEqF2nIrqbaNEr6CytYenPACbb4kD8e7Q-i_D26czK4_hC6-NIzP_RVDFl3s6Krn4sF5M4R2b8OPoWBmFuaPhZlZmBOLGLo7hlrn3H9A5hGCwvwXoqtY5g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Kim, Woo-Shik</creator><creator>Pu, Wei</creator><creator>Khairat, Ali</creator><creator>Siekmann, Mischa</creator><creator>Sole, Joel</creator><creator>Chen, Jianle</creator><creator>Karczewicz, Marta</creator><creator>Nguyen, Tung</creator><creator>Marpe, Detlev</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200601</creationdate><title>Cross-Component Prediction in HEVC</title><author>Kim, Woo-Shik ; Pu, Wei ; Khairat, Ali ; Siekmann, Mischa ; Sole, Joel ; Chen, Jianle ; Karczewicz, Marta ; Nguyen, Tung ; Marpe, Detlev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Color</topic><topic>Color coding</topic><topic>Color decorrelation</topic><topic>Correlation</topic><topic>Decoding</topic><topic>Delays</topic><topic>Encoding</topic><topic>High Efficiency Video Coding (HEVC)</topic><topic>Standardization</topic><topic>Transforms</topic><topic>Video coding</topic><topic>video coding standards</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Woo-Shik</creatorcontrib><creatorcontrib>Pu, Wei</creatorcontrib><creatorcontrib>Khairat, Ali</creatorcontrib><creatorcontrib>Siekmann, Mischa</creatorcontrib><creatorcontrib>Sole, Joel</creatorcontrib><creatorcontrib>Chen, Jianle</creatorcontrib><creatorcontrib>Karczewicz, Marta</creatorcontrib><creatorcontrib>Nguyen, Tung</creatorcontrib><creatorcontrib>Marpe, Detlev</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Woo-Shik</au><au>Pu, Wei</au><au>Khairat, Ali</au><au>Siekmann, Mischa</au><au>Sole, Joel</au><au>Chen, Jianle</au><au>Karczewicz, Marta</au><au>Nguyen, Tung</au><au>Marpe, Detlev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Component Prediction in HEVC</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>1699</spage><epage>1708</epage><pages>1699-1708</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2015.2496821</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2020-06, Vol.30 (6), p.1699-1708 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2410518252 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Color Color coding Color decorrelation Correlation Decoding Delays Encoding High Efficiency Video Coding (HEVC) Standardization Transforms Video coding video coding standards Video compression |
title | Cross-Component Prediction in HEVC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Component%20Prediction%20in%20HEVC&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Kim,%20Woo-Shik&rft.date=2020-06-01&rft.volume=30&rft.issue=6&rft.spage=1699&rft.epage=1708&rft.pages=1699-1708&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2015.2496821&rft_dat=%3Cproquest_RIE%3E2410518252%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410518252&rft_id=info:pmid/&rft_ieee_id=7314885&rfr_iscdi=true |