Cross-Component Prediction in HEVC

Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2020-06, Vol.30 (6), p.1699-1708
Hauptverfasser: Kim, Woo-Shik, Pu, Wei, Khairat, Ali, Siekmann, Mischa, Sole, Joel, Chen, Jianle, Karczewicz, Marta, Nguyen, Tung, Marpe, Detlev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1708
container_issue 6
container_start_page 1699
container_title IEEE transactions on circuits and systems for video technology
container_volume 30
creator Kim, Woo-Shik
Pu, Wei
Khairat, Ali
Siekmann, Mischa
Sole, Joel
Chen, Jianle
Karczewicz, Marta
Nguyen, Tung
Marpe, Detlev
description Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.
doi_str_mv 10.1109/TCSVT.2015.2496821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2410518252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7314885</ieee_id><sourcerecordid>2410518252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK5-Ab0UPbdO0kz-HKWsrrCgYN1rSNsEurhtTbsHv72pu3iax_DezONHyC2FjFLQj2XxsS0zBhQzxrVQjJ6RBUVUKWOA51ED0jSu8ZJcjeMOgHLF5YLcF6Efx7To90PfuW5K3oNr2npq-y5pu2S92hbX5MLbr9HdnOaSfD6vymKdbt5eXounTVrnAqdU8wpq76nWoq64tUI5aBCFrizFXEvmQEqF2nIrqbaNEr6CytYenPACbb4kD8e7Q-i_D26czK4_hC6-NIzP_RVDFl3s6Krn4sF5M4R2b8OPoWBmFuaPhZlZmBOLGLo7hlrn3H9A5hGCwvwXoqtY5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410518252</pqid></control><display><type>article</type><title>Cross-Component Prediction in HEVC</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Woo-Shik ; Pu, Wei ; Khairat, Ali ; Siekmann, Mischa ; Sole, Joel ; Chen, Jianle ; Karczewicz, Marta ; Nguyen, Tung ; Marpe, Detlev</creator><creatorcontrib>Kim, Woo-Shik ; Pu, Wei ; Khairat, Ali ; Siekmann, Mischa ; Sole, Joel ; Chen, Jianle ; Karczewicz, Marta ; Nguyen, Tung ; Marpe, Detlev</creatorcontrib><description>Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2015.2496821</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Color ; Color coding ; Color decorrelation ; Correlation ; Decoding ; Delays ; Encoding ; High Efficiency Video Coding (HEVC) ; Standardization ; Transforms ; Video coding ; video coding standards ; Video compression</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2020-06, Vol.30 (6), p.1699-1708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</citedby><cites>FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7314885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7314885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Woo-Shik</creatorcontrib><creatorcontrib>Pu, Wei</creatorcontrib><creatorcontrib>Khairat, Ali</creatorcontrib><creatorcontrib>Siekmann, Mischa</creatorcontrib><creatorcontrib>Sole, Joel</creatorcontrib><creatorcontrib>Chen, Jianle</creatorcontrib><creatorcontrib>Karczewicz, Marta</creatorcontrib><creatorcontrib>Nguyen, Tung</creatorcontrib><creatorcontrib>Marpe, Detlev</creatorcontrib><title>Cross-Component Prediction in HEVC</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.</description><subject>Accuracy</subject><subject>Color</subject><subject>Color coding</subject><subject>Color decorrelation</subject><subject>Correlation</subject><subject>Decoding</subject><subject>Delays</subject><subject>Encoding</subject><subject>High Efficiency Video Coding (HEVC)</subject><subject>Standardization</subject><subject>Transforms</subject><subject>Video coding</subject><subject>video coding standards</subject><subject>Video compression</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LxDAQxYMouK5-Ab0UPbdO0kz-HKWsrrCgYN1rSNsEurhtTbsHv72pu3iax_DezONHyC2FjFLQj2XxsS0zBhQzxrVQjJ6RBUVUKWOA51ED0jSu8ZJcjeMOgHLF5YLcF6Efx7To90PfuW5K3oNr2npq-y5pu2S92hbX5MLbr9HdnOaSfD6vymKdbt5eXounTVrnAqdU8wpq76nWoq64tUI5aBCFrizFXEvmQEqF2nIrqbaNEr6CytYenPACbb4kD8e7Q-i_D26czK4_hC6-NIzP_RVDFl3s6Krn4sF5M4R2b8OPoWBmFuaPhZlZmBOLGLo7hlrn3H9A5hGCwvwXoqtY5g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Kim, Woo-Shik</creator><creator>Pu, Wei</creator><creator>Khairat, Ali</creator><creator>Siekmann, Mischa</creator><creator>Sole, Joel</creator><creator>Chen, Jianle</creator><creator>Karczewicz, Marta</creator><creator>Nguyen, Tung</creator><creator>Marpe, Detlev</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200601</creationdate><title>Cross-Component Prediction in HEVC</title><author>Kim, Woo-Shik ; Pu, Wei ; Khairat, Ali ; Siekmann, Mischa ; Sole, Joel ; Chen, Jianle ; Karczewicz, Marta ; Nguyen, Tung ; Marpe, Detlev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-94b0cff1996cb4aa68e0d5569ba153972e077859a4a719ad86fb0bacf0e6f65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Color</topic><topic>Color coding</topic><topic>Color decorrelation</topic><topic>Correlation</topic><topic>Decoding</topic><topic>Delays</topic><topic>Encoding</topic><topic>High Efficiency Video Coding (HEVC)</topic><topic>Standardization</topic><topic>Transforms</topic><topic>Video coding</topic><topic>video coding standards</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Woo-Shik</creatorcontrib><creatorcontrib>Pu, Wei</creatorcontrib><creatorcontrib>Khairat, Ali</creatorcontrib><creatorcontrib>Siekmann, Mischa</creatorcontrib><creatorcontrib>Sole, Joel</creatorcontrib><creatorcontrib>Chen, Jianle</creatorcontrib><creatorcontrib>Karczewicz, Marta</creatorcontrib><creatorcontrib>Nguyen, Tung</creatorcontrib><creatorcontrib>Marpe, Detlev</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Woo-Shik</au><au>Pu, Wei</au><au>Khairat, Ali</au><au>Siekmann, Mischa</au><au>Sole, Joel</au><au>Chen, Jianle</au><au>Karczewicz, Marta</au><au>Nguyen, Tung</au><au>Marpe, Detlev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Component Prediction in HEVC</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>1699</spage><epage>1708</epage><pages>1699-1708</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Video coding in the YCbCr color space has been widely used, since it is efficient for compression, but it can result in color distortion due to conversion error. Meanwhile, coding in the RGB color space maintains high color fidelity, having the drawback of a substantial bitrate increase with respect to YCbCr coding. Cross-component prediction (CCP) efficiently compresses video content by decorrelating color components while keeping high color fidelity. In this scheme, the chroma residual signal is predicted from the luma residual signal inside the coding loop. This paper gives a description of the CCP scheme from several points of view, from theoretical background to practical implementation. The proposed CCP scheme has been evaluated in standardization communities and adopted into H.265/High Efficiency Video Coding (HEVC) Range Extensions. The experimental results show significant coding performance improvements for both natural and screen content video, while the quality of all color components is maintained. The average coding gains for natural video are 17% and 5% bitrate reduction in the case of intra coding and 11% and 4% in the case of inter coding for RGB and YCbCr coding, respectively, while the average increment of encoding and decoding times in the HEVC reference software implementation are 10% and 4%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2015.2496821</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2020-06, Vol.30 (6), p.1699-1708
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2410518252
source IEEE Electronic Library (IEL)
subjects Accuracy
Color
Color coding
Color decorrelation
Correlation
Decoding
Delays
Encoding
High Efficiency Video Coding (HEVC)
Standardization
Transforms
Video coding
video coding standards
Video compression
title Cross-Component Prediction in HEVC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Component%20Prediction%20in%20HEVC&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Kim,%20Woo-Shik&rft.date=2020-06-01&rft.volume=30&rft.issue=6&rft.spage=1699&rft.epage=1708&rft.pages=1699-1708&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2015.2496821&rft_dat=%3Cproquest_RIE%3E2410518252%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410518252&rft_id=info:pmid/&rft_ieee_id=7314885&rfr_iscdi=true