Indomethacin promotes browning and brown adipogenesis in both murine and human fat cells

Indomethacin (Indo), a nonsteroidal antiinflammatory drug, has been shown to promote murine brown adipogenesis both in vitro and in vivo, possibly due to its peroxisome proliferator‐activated receptor gamma (PPARγ)‐agonist activities. However, it is unclear whether Indo induces browning of white adi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology research & perspectives 2020-06, Vol.8 (3), p.e00592-n/a, Article 00592
Hauptverfasser: Overby, Haley, Yang, Yang, Xu, Xinyun, Wang, Shu, Zhao, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indomethacin (Indo), a nonsteroidal antiinflammatory drug, has been shown to promote murine brown adipogenesis both in vitro and in vivo, possibly due to its peroxisome proliferator‐activated receptor gamma (PPARγ)‐agonist activities. However, it is unclear whether Indo induces browning of white adipocytes from both murine and human origins or induces human brown adipogenesis. To bridge the gap, this study investigated the effects of increasing concentrations of Indo on murine 3T3‐L1, human primary subcutaneous white adipocytes (HPsubQ), and human brown (HBr) adipocytes. The results show that Indo dose‐dependently enhanced 3T3‐L1 adipocyte differentiation and upregulated both mRNA and protein expression of brown and beige adipocyte markers, while simultaneously suppressing white adipocyte‐specific marker mRNA expression. mRNA and protein expression of mitochondrial biogenesis and structural genes were dose‐dependently enhanced in Indo treated 3T3‐L1 adipocytes. This was accompanied by augmented mitochondrial DNA, enhanced oxygen consumption, proton leak, and maximal and spare respiratory capacity. Dose‐dependent transactivation of PPARγ confirmed Indo's PPARγ‐agonist activity in 3T3‐L1 cells. Knockdown of PPARγ significantly attenuated Indo's activities in selective browning genes, demonstrating PPARγ dependence of these effects. Moreover, Indo enhanced mRNA and protein expression of brown markers in HPsubQ adipocytes. Interestingly, Indo‐induced differential effects on individual PPARγ isoforms with significant dose‐dependent induction of PPARγ‐2 and suppression of PPARγ‐1 protein expression. Finally, Indo significantly promoted brown adipogenesis in HBr cells. Taken together, these results demonstrate Indo to be a potent thermogenic compound in both murine and human fat cells and may be explored as a therapeutic agent for obesity treatment and prevention.
ISSN:2052-1707
2052-1707
DOI:10.1002/prp2.592