Superior-tensile property of CoCrFeMnNi alloys achieved using friction-stir welding for cryogenic applications

The friction-stir weld (FSW) was investigated based on the relationship between microstructural and mechanical properties at room and cryogenic temperatures for rolled and cast Co0.2Cr0.2Fe0.2Mn0.2Ni0.2 high entropy alloys (HEAs). The rolled and cast HEA welds exhibited good weldability without weld...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-06, Vol.788, p.139547, Article 139547
Hauptverfasser: Park, Sangwon, Nam, Hyunbin, Park, Jeongmin, Na, Youngsang, Kim, Hyoungseop, Kang, Namhyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The friction-stir weld (FSW) was investigated based on the relationship between microstructural and mechanical properties at room and cryogenic temperatures for rolled and cast Co0.2Cr0.2Fe0.2Mn0.2Ni0.2 high entropy alloys (HEAs). The rolled and cast HEA welds exhibited good weldability without welding defects. The grain size (GS) of the stir zone (SZ) for rolled and cast HEAs was smaller than that of the base metal (BM). The W, Cr, and C particles caused by the wear of the WC-Co tool formed fine M23C6 carbides, due to the heat generated during the FSW, and accelerated the recrystallization via the particle stimulated nucleation (PSN) effect. Therefore, the area with M23C6 carbide exhibited a finer grain size compared with the area without M23C6 carbide. The rolled HEA was fractured in the SZ owing to the thinning phenomenon, and the cast HEA was fractured in the BM owing to the GS of the SZ, which was much finer than the GS of the BM. However, both HEA welds had larger room temperature strength than BM, and the cryogenic strength was also improved owing to the primary twin, secondary twin, and tangled dislocation. The PSN effect due to the carbides contributed to the increase in strength. Therefore, the FSW of the rolled and cast HEAs produced in this study is suitable for cryogenic applications. [Display omitted] •The rolled and cast HEA welds exhibited good weldability without welding defects.•The wear of the WC-Co tool formed fine M23C6 carbides.•The PSN effect due to the carbides contributed to the increase in strength.•The cryogenic strength improved owing to secondary twins and tangled dislocation.•The FSW of HEAs proposed instead of the LBW owing to its greater strength.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2020.139547