Sr2NiWO6 Double Perovskite Oxide as a Novel Visible-Light-Responsive Water Oxidation Photocatalyst
Screening of stable visible-light-responsive water oxidation semiconductor photocatalysts is highly desired for the development of photocatalytic water splitting systems. Herein, a visible-light-absorbing Sr2NiWO6 double perovskite oxide photocatalyst was successfully prepared via a conventional sol...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-06, Vol.12 (23), p.25938-25948 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Screening of stable visible-light-responsive water oxidation semiconductor photocatalysts is highly desired for the development of photocatalytic water splitting systems. Herein, a visible-light-absorbing Sr2NiWO6 double perovskite oxide photocatalyst was successfully prepared via a conventional solid-state reaction method. The intrinsic Sr2NiWO6 shows photocatalytic oxygen evaluation reaction (OER) activity of 60 mu mol h(-1) g(-1), even without loading any cocatalysts. The DFT calculation indicates that the Ni species on the surface is the active site for the OER. The photocatalytic OER activity was further improved by loading Pt and RuO2 dual redox cocatalysts on the surface of Sr2NiWO6 to achieve a photocatalytic OER activity of 420 mu mol h(-1) g(-1), which corresponds to a remarkable apparent quantum efficiency (AQE) of 8.6% (lambda approximate to 420 nm). The result indicates that Sr2NiWO6 is one of the best double perovskite oxide-based photocatalysts for the photocatalytic OER, and the activity is even comparable to the benchmark BiVO4-based photocatalyst. The improvement of the photocatalytic OER activity is due to the provision of more active redox sites as well as the synergetic effect of the dual redox cocatalysts in facilitating charge separation and transfer. This work demonstrates that double perovskite oxides may serve as a novel class of efficient and stable oxide-based semiconductor photocatalysts for water splitting. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c05576 |