Structural Investigation of Single Specimens with a Femtosecond X-Ray Laser: Routes to Signal-to-Noise Ratio Enhancement
Interest in atomic scale structures of individual specimens has invigorated developments of high-resolution probes, which include single-particle imaging using x-ray free-electron lasers (XFELs). The demonstrated spatial resolution, however, remains at tens of nanometers with difficulty in collectin...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2020-06, Vol.13 (6), Article 064045 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interest in atomic scale structures of individual specimens has invigorated developments of high-resolution probes, which include single-particle imaging using x-ray free-electron lasers (XFELs). The demonstrated spatial resolution, however, remains at tens of nanometers with difficulty in collecting diffraction signals at high frequency distinguished from noises. As such, various resolution-enhancement methods have been introduced, but few experimental verifications are available. Here, by carrying out XFEL single-pulse diffraction experiments, we explicitly unveil the dependence of SNRs on incident xray flux, data averaging, or multiparticle interference. We further propose a data-accumulation method of resolution-shell averaging as a robust scheme to improve the SNR. This study establishes a roadmap with which high-resolution XFEL single-pulse experiments can be contrived. |
---|---|
ISSN: | 2331-7019 2331-7019 |
DOI: | 10.1103/PhysRevApplied.13.064045 |