Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System

Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-06, Vol.124 (24), p.240502-240502, Article 240502
Hauptverfasser: Chang, H-S, Zhong, Y. P., Bienfait, A., Chou, M-H, Conner, C. R., Dumur, E., Grebel, J., Peairs, G. A., Povey, R. G., Satzinger, K. J., Cleland, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al., Nature (London) 558, 264 (2018); C. J. Axline et aL, Nat. Phys. 14, 705 (2018); P. Campagne-Ibarcq et al., Phys. Rev. Lett. 120, 200501(2018); N. Leung et al, npj Quantum Inf. 5, 18 (2019); Y. P. Zhong et al, Nat. Phys. 15, 741(2019); A. Bienfait et al., Science 364, 368 (2019)]. Adiabatic protocols can overcome channel loss by transferring quantum states without populating the lossy communication channel. Here, we present a unique superconducting quantum communication system, comprising two superconducting qubits connected by a 0.73 m-long communication channel. Significantly, we can introduce large tunable loss to the channel, allowing exploration of different entanglement protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the deterministic generation of entangled Bell states with a fidelity of 96%, all without populating the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay method. We also explore the performance of the adiabatic protocol in the presence of significant channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving higher state transfer and entanglement fidelities than the relay method.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.124.240502