Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles
A novel single-source-precursor for SiC-TaC-C nanocomposites was successfully synthesized by the chemical reaction between a polycarbosilane (allylhydridopolycarbosilane, AHPCS) and tantalum(V) chloride (TaCl 5 ), which was confirmed by Fourier transform infrared spectra (FTIR) measurement. After py...
Gespeichert in:
Veröffentlicht in: | Journal of advanced ceramics 2020-06, Vol.9 (3), p.320-328 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel single-source-precursor for SiC-TaC-C nanocomposites was successfully synthesized by the chemical reaction between a polycarbosilane (allylhydridopolycarbosilane, AHPCS) and tantalum(V) chloride (TaCl
5
), which was confirmed by Fourier transform infrared spectra (FTIR) measurement. After pyrolysis of the resultant single-source-precursors at 900 °C, amorphous ceramic powders were obtained. The 900 °C ceramics were annealed at different temperatures in the range of 1200–1600 °C to gain SiC-TaC-C nanocomposites. The phase evolution of ceramic nanocomposites was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the TaC starts to crystallize at lower temperature than the β-SiC. It is particularly worth pointing out that the unique core-shell structured TaC@C nanoparticles were
in-situ
formed and homogeneously distributed in the ceramic matrix after annealing at 1400 °C. Even at a high temperature of 1600 °C, the grain sizes of β-SiC and TaC are smaller than 30 nm, fulfilling the definition of nanocomposites. The present study related to SiC-TaC-C nanocomposites paves a new road for enriching ultra-high temperature ceramic family suitable for structural/functional applications in harsh environment. |
---|---|
ISSN: | 2226-4108 2227-8508 |
DOI: | 10.1007/s40145-020-0371-z |