Recent Progress on Advanced Imaging Techniques for Lithium‐Ion Batteries

Lithium‐ion batteries are the most commercially successful electrochemical devices, extensively used in intelligent electronics, electric vehicles, grid energy storages, etc. However, there still needs to be further improvement of their performance such as in energy density, cyclability, rate capabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-01, Vol.11 (2), p.n/a, Article 2000806
Hauptverfasser: Deng, Zhe, Lin, Xing, Huang, Zhenyu, Meng, Jintao, Zhong, Yun, Ma, Guangting, Zhou, Yu, Shen, Yue, Ding, Han, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium‐ion batteries are the most commercially successful electrochemical devices, extensively used in intelligent electronics, electric vehicles, grid energy storages, etc. However, there still needs to be further improvement of their performance such as in energy density, cyclability, rate capability, and safety. To do so, it is necessary to understand the detailed structural evolution progress inside the battery. Many advanced imaging techniques have been developed to directly monitor the status and get some key information inside the battery. For advanced imaging techniques, superhigh resolution, fully informative function, nondestruction of the sample, and in situ observation are required. This review introduces and discusses some recent important progress on a variety of advanced imaging techniques for battery research. These imaging techniques have enabled the visualization of sub‐micrometer level chemical valence distribution, evolution of solid‐electrolyte interface, Li dendrite growth, and trace amount of gassing, etc., which greatly promote the development of rechargeable batteries. Of particular note, a new ultrasonic imaging technique has been recently developed to monitor gas generation, the electrolyte wetting process, and the state of charge in the battery. Finally, a perspective is given on some future developments in the imaging techniques for Li‐ion batteries and other rechargeable batteries. This article introduces and discusses some recent important progress on advanced imaging techniques for battery research. These techniques have enabled the visualization of essential internal structural changes during charge/discharge, which greatly promote the development of rechargeable batteries.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202000806