Nonuniversal entanglement level statistics in projection-driven quantum circuits

We study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each time step. We encounter two phase transitions with increasing projection rate. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-06, Vol.101 (23), p.1, Article 235104
Hauptverfasser: Zhang, Lei, Reyes, Justin A., Kourtis, Stefanos, Chamon, Claudio, Mucciolo, Eduardo R., Ruckenstein, Andrei E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each time step. We encounter two phase transitions with increasing projection rate. The first is the volume-to-area law transition observed in quantum circuits with projective measurements. We identify a second transition within the area law phase by repartioning the system randomly into two subsystems and probing the entanglement level statistics. This second transition separates a pure Poisson level statistics phase at large projective measurement rates from a regime of residual level repulsion in the entanglement spectrum, characterized by nonuniversal level spacing statistics that interpolates between the Wigner-Dyson and Poisson distributions. By applying a tensor network contraction algorithm introduced in [Z.-C. Yang et al., Phys. Rev. E 97, 033303 (2018)] to the circuit spacetime, we identify this second projective-measurement-driven transition as a percolation transition of entangled bonds. The same behavior is observed in both circuits of random two-qubit unitaries and circuits of universal gate sets, including the set implemented by Google in its Sycamore circuits.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.101.235104