Roadmap to Gigahertz Organic Transistors

Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-05, Vol.30 (20), p.n/a, Article 1903812
Hauptverfasser: Zschieschang, Ute, Borchert, James W., Giorgio, Michele, Caironi, Mario, Letzkus, Florian, Burghartz, Joachim N., Waizmann, Ulrike, Weis, Jürgen, Ludwigs, Sabine, Klauk, Hagen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced functional materials
container_volume 30
creator Zschieschang, Ute
Borchert, James W.
Giorgio, Michele
Caironi, Mario
Letzkus, Florian
Burghartz, Joachim N.
Waizmann, Ulrike
Weis, Jürgen
Ludwigs, Sabine
Klauk, Hagen
description Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived. Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.
doi_str_mv 10.1002/adfm.201903812
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000536288300006CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402830710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKtXzwteBNk6STbZ9FhWW4VKQSp4C9ndpKa0m5rsIvXXm9JSjzqXmcP73jweQtcYBhiA3KvarAcE8BCowOQE9TDHPKVAxOnxxu_n6CKEJQDOc5r10O2rU_VabZLWJRO7UB_at9_JzC9UY6tk7lUTbGidD5fozKhV0FeH3Udv48d58ZROZ5PnYjRNqwwISWvKak5NzQUrSyO4NhQbyitGsOAip4SSzJgcsjzTBqqaKkYYUyVhYijyTNE-utn7brz77HRo5dJ1vokvJYkfBIUcQ1QN9qrKuxC8NnLj7Vr5rcQgd23IXRvy2EYE7vbAly6dCZXVTaWPEAAwyomI7nF4VIv_qwvbqta6pnBd00Z0eEDtSm__iCVHD-OX35A_aD2CAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402830710</pqid></control><display><type>article</type><title>Roadmap to Gigahertz Organic Transistors</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Zschieschang, Ute ; Borchert, James W. ; Giorgio, Michele ; Caironi, Mario ; Letzkus, Florian ; Burghartz, Joachim N. ; Waizmann, Ulrike ; Weis, Jürgen ; Ludwigs, Sabine ; Klauk, Hagen</creator><creatorcontrib>Zschieschang, Ute ; Borchert, James W. ; Giorgio, Michele ; Caironi, Mario ; Letzkus, Florian ; Burghartz, Joachim N. ; Waizmann, Ulrike ; Weis, Jürgen ; Ludwigs, Sabine ; Klauk, Hagen</creatorcontrib><description>Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived. Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201903812</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Carrier mobility ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; contact resistance ; Current carriers ; Materials Science ; Materials Science, Multidisciplinary ; nanoscale transistors ; Nanoscience &amp; Nanotechnology ; organic thin‐film transistors ; Parameters ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Semiconductor devices ; Silicon ; Technology ; Transistors ; Transit</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (20), p.n/a, Article 1903812</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>53</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000536288300006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</citedby><cites>FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</cites><orcidid>0000-0002-0442-4439 ; 0000-0002-9904-4593 ; 0000-0003-4563-5635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201903812$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201903812$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids></links><search><creatorcontrib>Zschieschang, Ute</creatorcontrib><creatorcontrib>Borchert, James W.</creatorcontrib><creatorcontrib>Giorgio, Michele</creatorcontrib><creatorcontrib>Caironi, Mario</creatorcontrib><creatorcontrib>Letzkus, Florian</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><creatorcontrib>Waizmann, Ulrike</creatorcontrib><creatorcontrib>Weis, Jürgen</creatorcontrib><creatorcontrib>Ludwigs, Sabine</creatorcontrib><creatorcontrib>Klauk, Hagen</creatorcontrib><title>Roadmap to Gigahertz Organic Transistors</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived. Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.</description><subject>Carrier mobility</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>contact resistance</subject><subject>Current carriers</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>nanoscale transistors</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>organic thin‐film transistors</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Technology</subject><subject>Transistors</subject><subject>Transit</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkEFLAzEQhYMoWKtXzwteBNk6STbZ9FhWW4VKQSp4C9ndpKa0m5rsIvXXm9JSjzqXmcP73jweQtcYBhiA3KvarAcE8BCowOQE9TDHPKVAxOnxxu_n6CKEJQDOc5r10O2rU_VabZLWJRO7UB_at9_JzC9UY6tk7lUTbGidD5fozKhV0FeH3Udv48d58ZROZ5PnYjRNqwwISWvKak5NzQUrSyO4NhQbyitGsOAip4SSzJgcsjzTBqqaKkYYUyVhYijyTNE-utn7brz77HRo5dJ1vokvJYkfBIUcQ1QN9qrKuxC8NnLj7Vr5rcQgd23IXRvy2EYE7vbAly6dCZXVTaWPEAAwyomI7nF4VIv_qwvbqta6pnBd00Z0eEDtSm__iCVHD-OX35A_aD2CAA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zschieschang, Ute</creator><creator>Borchert, James W.</creator><creator>Giorgio, Michele</creator><creator>Caironi, Mario</creator><creator>Letzkus, Florian</creator><creator>Burghartz, Joachim N.</creator><creator>Waizmann, Ulrike</creator><creator>Weis, Jürgen</creator><creator>Ludwigs, Sabine</creator><creator>Klauk, Hagen</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0442-4439</orcidid><orcidid>https://orcid.org/0000-0002-9904-4593</orcidid><orcidid>https://orcid.org/0000-0003-4563-5635</orcidid></search><sort><creationdate>20200501</creationdate><title>Roadmap to Gigahertz Organic Transistors</title><author>Zschieschang, Ute ; Borchert, James W. ; Giorgio, Michele ; Caironi, Mario ; Letzkus, Florian ; Burghartz, Joachim N. ; Waizmann, Ulrike ; Weis, Jürgen ; Ludwigs, Sabine ; Klauk, Hagen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>contact resistance</topic><topic>Current carriers</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>nanoscale transistors</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>organic thin‐film transistors</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Technology</topic><topic>Transistors</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zschieschang, Ute</creatorcontrib><creatorcontrib>Borchert, James W.</creatorcontrib><creatorcontrib>Giorgio, Michele</creatorcontrib><creatorcontrib>Caironi, Mario</creatorcontrib><creatorcontrib>Letzkus, Florian</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><creatorcontrib>Waizmann, Ulrike</creatorcontrib><creatorcontrib>Weis, Jürgen</creatorcontrib><creatorcontrib>Ludwigs, Sabine</creatorcontrib><creatorcontrib>Klauk, Hagen</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zschieschang, Ute</au><au>Borchert, James W.</au><au>Giorgio, Michele</au><au>Caironi, Mario</au><au>Letzkus, Florian</au><au>Burghartz, Joachim N.</au><au>Waizmann, Ulrike</au><au>Weis, Jürgen</au><au>Ludwigs, Sabine</au><au>Klauk, Hagen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roadmap to Gigahertz Organic Transistors</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>20</issue><epage>n/a</epage><artnum>1903812</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived. Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.201903812</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0442-4439</orcidid><orcidid>https://orcid.org/0000-0002-9904-4593</orcidid><orcidid>https://orcid.org/0000-0003-4563-5635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-05, Vol.30 (20), p.n/a, Article 1903812
issn 1616-301X
1616-3028
language eng
recordid cdi_webofscience_primary_000536288300006CitationCount
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Carrier mobility
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
contact resistance
Current carriers
Materials Science
Materials Science, Multidisciplinary
nanoscale transistors
Nanoscience & Nanotechnology
organic thin‐film transistors
Parameters
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Semiconductor devices
Silicon
Technology
Transistors
Transit
title Roadmap to Gigahertz Organic Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roadmap%20to%20Gigahertz%20Organic%20Transistors&rft.jtitle=Advanced%20functional%20materials&rft.au=Zschieschang,%20Ute&rft.date=2020-05-01&rft.volume=30&rft.issue=20&rft.epage=n/a&rft.artnum=1903812&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201903812&rft_dat=%3Cproquest_webof%3E2402830710%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402830710&rft_id=info:pmid/&rfr_iscdi=true