Roadmap to Gigahertz Organic Transistors
Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-05, Vol.30 (20), p.n/a, Article 1903812 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Zschieschang, Ute Borchert, James W. Giorgio, Michele Caironi, Mario Letzkus, Florian Burghartz, Joachim N. Waizmann, Ulrike Weis, Jürgen Ludwigs, Sabine Klauk, Hagen |
description | Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived.
Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed. |
doi_str_mv | 10.1002/adfm.201903812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000536288300006CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402830710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKtXzwteBNk6STbZ9FhWW4VKQSp4C9ndpKa0m5rsIvXXm9JSjzqXmcP73jweQtcYBhiA3KvarAcE8BCowOQE9TDHPKVAxOnxxu_n6CKEJQDOc5r10O2rU_VabZLWJRO7UB_at9_JzC9UY6tk7lUTbGidD5fozKhV0FeH3Udv48d58ZROZ5PnYjRNqwwISWvKak5NzQUrSyO4NhQbyitGsOAip4SSzJgcsjzTBqqaKkYYUyVhYijyTNE-utn7brz77HRo5dJ1vokvJYkfBIUcQ1QN9qrKuxC8NnLj7Vr5rcQgd23IXRvy2EYE7vbAly6dCZXVTaWPEAAwyomI7nF4VIv_qwvbqta6pnBd00Z0eEDtSm__iCVHD-OX35A_aD2CAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402830710</pqid></control><display><type>article</type><title>Roadmap to Gigahertz Organic Transistors</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zschieschang, Ute ; Borchert, James W. ; Giorgio, Michele ; Caironi, Mario ; Letzkus, Florian ; Burghartz, Joachim N. ; Waizmann, Ulrike ; Weis, Jürgen ; Ludwigs, Sabine ; Klauk, Hagen</creator><creatorcontrib>Zschieschang, Ute ; Borchert, James W. ; Giorgio, Michele ; Caironi, Mario ; Letzkus, Florian ; Burghartz, Joachim N. ; Waizmann, Ulrike ; Weis, Jürgen ; Ludwigs, Sabine ; Klauk, Hagen</creatorcontrib><description>Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived.
Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201903812</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Carrier mobility ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; contact resistance ; Current carriers ; Materials Science ; Materials Science, Multidisciplinary ; nanoscale transistors ; Nanoscience & Nanotechnology ; organic thin‐film transistors ; Parameters ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science & Technology ; Science & Technology - Other Topics ; Semiconductor devices ; Silicon ; Technology ; Transistors ; Transit</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (20), p.n/a, Article 1903812</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>53</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000536288300006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</citedby><cites>FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</cites><orcidid>0000-0002-0442-4439 ; 0000-0002-9904-4593 ; 0000-0003-4563-5635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201903812$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201903812$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids></links><search><creatorcontrib>Zschieschang, Ute</creatorcontrib><creatorcontrib>Borchert, James W.</creatorcontrib><creatorcontrib>Giorgio, Michele</creatorcontrib><creatorcontrib>Caironi, Mario</creatorcontrib><creatorcontrib>Letzkus, Florian</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><creatorcontrib>Waizmann, Ulrike</creatorcontrib><creatorcontrib>Weis, Jürgen</creatorcontrib><creatorcontrib>Ludwigs, Sabine</creatorcontrib><creatorcontrib>Klauk, Hagen</creatorcontrib><title>Roadmap to Gigahertz Organic Transistors</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived.
Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.</description><subject>Carrier mobility</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>contact resistance</subject><subject>Current carriers</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>nanoscale transistors</subject><subject>Nanoscience & Nanotechnology</subject><subject>organic thin‐film transistors</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Technology</subject><subject>Transistors</subject><subject>Transit</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkEFLAzEQhYMoWKtXzwteBNk6STbZ9FhWW4VKQSp4C9ndpKa0m5rsIvXXm9JSjzqXmcP73jweQtcYBhiA3KvarAcE8BCowOQE9TDHPKVAxOnxxu_n6CKEJQDOc5r10O2rU_VabZLWJRO7UB_at9_JzC9UY6tk7lUTbGidD5fozKhV0FeH3Udv48d58ZROZ5PnYjRNqwwISWvKak5NzQUrSyO4NhQbyitGsOAip4SSzJgcsjzTBqqaKkYYUyVhYijyTNE-utn7brz77HRo5dJ1vokvJYkfBIUcQ1QN9qrKuxC8NnLj7Vr5rcQgd23IXRvy2EYE7vbAly6dCZXVTaWPEAAwyomI7nF4VIv_qwvbqta6pnBd00Z0eEDtSm__iCVHD-OX35A_aD2CAA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zschieschang, Ute</creator><creator>Borchert, James W.</creator><creator>Giorgio, Michele</creator><creator>Caironi, Mario</creator><creator>Letzkus, Florian</creator><creator>Burghartz, Joachim N.</creator><creator>Waizmann, Ulrike</creator><creator>Weis, Jürgen</creator><creator>Ludwigs, Sabine</creator><creator>Klauk, Hagen</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0442-4439</orcidid><orcidid>https://orcid.org/0000-0002-9904-4593</orcidid><orcidid>https://orcid.org/0000-0003-4563-5635</orcidid></search><sort><creationdate>20200501</creationdate><title>Roadmap to Gigahertz Organic Transistors</title><author>Zschieschang, Ute ; Borchert, James W. ; Giorgio, Michele ; Caironi, Mario ; Letzkus, Florian ; Burghartz, Joachim N. ; Waizmann, Ulrike ; Weis, Jürgen ; Ludwigs, Sabine ; Klauk, Hagen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4022-d35d63fd685bbf86ef31f36c521868732324ff70474ef0cd3a5255ab2589874a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>contact resistance</topic><topic>Current carriers</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>nanoscale transistors</topic><topic>Nanoscience & Nanotechnology</topic><topic>organic thin‐film transistors</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Technology</topic><topic>Transistors</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zschieschang, Ute</creatorcontrib><creatorcontrib>Borchert, James W.</creatorcontrib><creatorcontrib>Giorgio, Michele</creatorcontrib><creatorcontrib>Caironi, Mario</creatorcontrib><creatorcontrib>Letzkus, Florian</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><creatorcontrib>Waizmann, Ulrike</creatorcontrib><creatorcontrib>Weis, Jürgen</creatorcontrib><creatorcontrib>Ludwigs, Sabine</creatorcontrib><creatorcontrib>Klauk, Hagen</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zschieschang, Ute</au><au>Borchert, James W.</au><au>Giorgio, Michele</au><au>Caironi, Mario</au><au>Letzkus, Florian</au><au>Burghartz, Joachim N.</au><au>Waizmann, Ulrike</au><au>Weis, Jürgen</au><au>Ludwigs, Sabine</au><au>Klauk, Hagen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roadmap to Gigahertz Organic Transistors</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>20</issue><epage>n/a</epage><artnum>1903812</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Despite the large body of research conducted on organic transistors, the transit frequency of organic field‐effect transistors has seen virtually no improvement for a decade and remains far below 1 GHz. One reason is that most of the research is still focused on improving the charge‐carrier mobility, a parameter that has little influence on the transit frequency of short‐channel transistors. By examining the fundamental equations for the transit frequency of field‐effect transistors and by extrapolating recent progress on the relevant device parameters, a roadmap to gigahertz organic transistors is derived.
Work on organic transistors often focuses on the carrier mobility, which has little influence on the transit frequency. The past decade has thus seen virtually no improvement in the transit frequency of organic transistors. By examining the fundamental equations for transit frequency and recent progress in improving the relevant device parameters, a roadmap to gigahertz organic transistors is developed.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.201903812</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0442-4439</orcidid><orcidid>https://orcid.org/0000-0002-9904-4593</orcidid><orcidid>https://orcid.org/0000-0003-4563-5635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-05, Vol.30 (20), p.n/a, Article 1903812 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_webofscience_primary_000536288300006CitationCount |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Carrier mobility Chemistry Chemistry, Multidisciplinary Chemistry, Physical contact resistance Current carriers Materials Science Materials Science, Multidisciplinary nanoscale transistors Nanoscience & Nanotechnology organic thin‐film transistors Parameters Physical Sciences Physics Physics, Applied Physics, Condensed Matter Science & Technology Science & Technology - Other Topics Semiconductor devices Silicon Technology Transistors Transit |
title | Roadmap to Gigahertz Organic Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roadmap%20to%20Gigahertz%20Organic%20Transistors&rft.jtitle=Advanced%20functional%20materials&rft.au=Zschieschang,%20Ute&rft.date=2020-05-01&rft.volume=30&rft.issue=20&rft.epage=n/a&rft.artnum=1903812&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201903812&rft_dat=%3Cproquest_webof%3E2402830710%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402830710&rft_id=info:pmid/&rfr_iscdi=true |