Energy Consumption Reduction of a Chiller Plant by Adding Evaporative Pads to Decrease Condensation Temperature

The high energy consumption of cooling systems justifies the need for strategies to increase the efficiency of the facilities, in order to reduce the related CO2 emissions. This study aims to improve the performance and reduce the energy consumption of an 8.6 MW air cooled chiller. This installed ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-05, Vol.13 (9), p.2218, Article 2218
Hauptverfasser: Rey Martinez, Francisco J., San Jose Alonso, Julio F., Velasco Gomez, Eloy, Tejero Gonzalez, Ana, Esquivias, Paula M., Rey Hernandez, Javier M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high energy consumption of cooling systems justifies the need for strategies to increase the efficiency of the facilities, in order to reduce the related CO2 emissions. This study aims to improve the performance and reduce the energy consumption of an 8.6 MW air cooled chiller. This installed capacity is biased due to the screw compressors, of 2.98 Energy Efficiency Ratio (EER) at full load (characteristics provided by the manufacturer). The chiller unit has been modified by placing evaporating cooling pads before the condensing coils. The chiller has been monitored for three months, recording over 544,322 measurements (5 min-step data), with and without the evaporative cooling pads, to assess the performance. Data comparison has been done by selecting two days (with and without evaporative panels) with the same health care load and temperatures. Implementing the proposed strategy yields an improvement in the European Seasonal Energy Efficiency Ratio (ESEER) from 3.69 to 4.83, while the Total Equivalent Warming Impact (TEWI) decreases about 1000 tCO(2). Energy savings of up to 32.6 MWh result into a payback period lower than 2 years.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13092218