Antarctic ice-shelf thickness changes from CryoSat-2 SARIn mode measurements: Assessment and comparison with IceBridge and ICESat
Ice-shelf thickness changes are of critical importance for understanding the stability of the Antarctic ice-sheet because they restrain the seaward flow of grounded glaciers. In this study, we find that neither backscatter nor leading-edge width contained in the least-squares fitting model can impro...
Gespeichert in:
Veröffentlicht in: | Journal of Earth System Science 2020-12, Vol.129 (1), p.127, Article 127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ice-shelf thickness changes are of critical importance for understanding the stability of the Antarctic ice-sheet because they restrain the seaward flow of grounded glaciers. In this study, we find that neither backscatter nor leading-edge width contained in the least-squares fitting model can improve the accuracy of ice-shelf thickness change estimations from CryoSat-2, which is validated by comparing the CryoSat-2-derived elevation changes from least-squares fitting models with different combinations of waveform parameters against the Operation IceBridge ATM L4 data. Using the model without backscatter and leading-edge width to infer the thickness changes in Antarctic ice shelves from CryoSat-2, we find that the most significant thinning signals are mainly concentrated on the ice shelves along the Amundsen Sea coast, such as Getz, whose thickness variations are dominated by ocean-driven basal melting. This phenomenon has also been confirmed by the ICESat results. Overall, the Antarctic ice shelves volume changed on average by –0.34 ± 66.36 km
3
yr
−1
during the period from July 2010 to December 2016. |
---|---|
ISSN: | 2347-4327 0253-4126 0973-774X |
DOI: | 10.1007/s12040-020-01392-2 |